論文の概要: A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems
- arxiv url: http://arxiv.org/abs/2205.07250v2
- Date: Sun, 24 Mar 2024 03:33:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 02:09:26.971173
- Title: A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems
- Title(参考訳): 産業制御問題におけるオフラインモデルに基づく最適化のためのcGANアンサンブルに基づく不確実性対応サロゲートモデル
- Authors: Cheng Feng,
- Abstract要約: 本研究では、実世界の産業制御問題に対するオフラインモデルに基づく最適化の適用に関する2つの重要な問題に焦点をあてる。
第一の問題は、ノイズの多い産業データに存在するダイナミクスを正確にキャプチャする信頼性の高い確率モデルを作成する方法である。
第2の問題は、産業システムからのフィードバックを積極的に収集することなく、制御パラメータを確実に最適化する方法である。
- 参考スコア(独自算出の注目度): 2.280762565226767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study focuses on two important problems related to applying offline model-based optimization to real-world industrial control problems. The first problem is how to create a reliable probabilistic model that accurately captures the dynamics present in noisy industrial data. The second problem is how to reliably optimize control parameters without actively collecting feedback from industrial systems. Specifically, we introduce a novel cGAN ensemble-based uncertainty-aware surrogate model for reliable offline model-based optimization in industrial control problems. The effectiveness of the proposed method is demonstrated through extensive experiments conducted on two representative cases, namely a discrete control case and a continuous control case. The results of these experiments show that our method outperforms several competitive baselines in the field of offline model-based optimization for industrial control.
- Abstract(参考訳): 本研究では、実世界の産業制御問題に対するオフラインモデルに基づく最適化の適用に関する2つの重要な問題に焦点をあてる。
第一の問題は、ノイズの多い産業データに存在するダイナミクスを正確にキャプチャする信頼性の高い確率モデルを作成する方法である。
第2の問題は、産業システムからのフィードバックを積極的に収集することなく、制御パラメータを確実に最適化する方法である。
具体的には、産業制御問題における信頼性の高いオフラインモデルに基づく最適化のための、新しいcGANアンサンブルに基づく不確実性対応サロゲートモデルを提案する。
提案手法の有効性は, 離散制御ケースと連続制御ケースの2つの代表事例に対して行った広範囲な実験により実証された。
これらの実験結果から,本手法は産業制御のためのオフラインモデルベース最適化の分野で,いくつかの競争的ベースラインを上回っていることがわかった。
関連論文リスト
- Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - A Cost-Sensitive Transformer Model for Prognostics Under Highly
Imbalanced Industrial Data [1.6492989697868894]
本稿では,体系的なワークフローの一部として開発された新しいコスト感応型トランスフォーマーモデルを提案する。
その結果,最先端手法と比較して性能が大幅に向上した。
本研究は, 産業環境における故障予測の独特な課題に対処する上での本手法の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-01-16T15:09:53Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Model-based Offline Policy Optimization with Adversarial Network [0.36868085124383626]
本稿では,新たなモデルベースオフラインポリシー最適化フレームワーク(MOAN)を提案する。
主なアイデアは、敵の学習を使って、より良い一般化を伴う遷移モデルを構築することである。
我々の手法は、広く研究されているオフラインRLベンチマークにおいて、最先端のベースラインよりも優れている。
論文 参考訳(メタデータ) (2023-09-05T11:49:33Z) - Resiliency Analysis of LLM generated models for Industrial Automation [0.7018015405843725]
本稿では,Large Language Models (LLMs) を用いた自動生成産業自動化・制御システムのレジリエンスと効率性について検討する。
本研究の目的は、産業自動化・制御における自動生成システムの有効性と信頼性に関する洞察を提供することと、その設計・実装改善の可能性を明らかにすることである。
論文 参考訳(メタデータ) (2023-08-23T13:35:36Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
深層強化学習(DRL)は多くのアプリケーションにおいてシーケンシャルな意思決定問題を解決する大きな可能性を示している。
主要な障壁の1つは、DRLが学んだ政策の一般化性の低下につながる過度に適合する問題である。
理論的保証のあるオフラインDRLに対する悲観的モデル選択(PMS)手法を提案する。
論文 参考訳(メタデータ) (2021-11-29T06:29:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - A Reinforcement Learning-based Economic Model Predictive Control
Framework for Autonomous Operation of Chemical Reactors [0.5735035463793008]
本研究では,非線形系のオンラインモデルパラメータ推定のためのEMPCとRLを統合するための新しいフレームワークを提案する。
最先端のRLアルゴリズムとEMPCスキームを最小限の修正で使用できます。
論文 参考訳(メタデータ) (2021-05-06T13:34:30Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。