論文の概要: Downstream Transformer Generation of Question-Answer Pairs with
Preprocessing and Postprocessing Pipelines
- arxiv url: http://arxiv.org/abs/2205.07387v1
- Date: Sun, 15 May 2022 21:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 02:24:11.859262
- Title: Downstream Transformer Generation of Question-Answer Pairs with
Preprocessing and Postprocessing Pipelines
- Title(参考訳): 先行処理と後処理パイプラインを用いた解答ペアの下流変圧器生成
- Authors: Cheng Zhang, Hao Zhang, Jie Wang
- Abstract要約: TP3はまず、QAPデータセット上で事前訓練されたトランスフォーマーを微調整し、その後、事前処理パイプラインを使用して適切な回答を選択し、関連する文を微調整されたトランスフォーマーに供給し、候補QAPを生成する。
本稿では,TP3がガオカオENデータセット上で高い品質のQAPを生成することを示す。
- 参考スコア(独自算出の注目度): 14.037305826222276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a system called TP3 to perform a downstream task of transformers
on generating question-answer pairs (QAPs) from a given article. TP3 first
finetunes pretrained transformers on QAP datasets, then uses a preprocessing
pipeline to select appropriate answers, feeds the relevant sentences and the
answer to the finetuned transformer to generate candidate QAPs, and finally
uses a postprocessing pipeline to filter inadequate QAPs. In particular, using
pretrained T5 models as transformers and the SQuAD dataset as the finetruning
dataset, we show that TP3 generates satisfactory number of QAPs with high
qualities on the Gaokao-EN dataset.
- Abstract(参考訳): 本稿では,ある記事から質問応答対(QAP)を生成するための変圧器の下流タスクを行うTP3システムを提案する。
TP3はまず、QAPデータセット上で事前訓練されたトランスフォーマーを使用して、適切な回答を選択するために前処理パイプラインを使用し、関連する文と応答を細調整トランスフォーマーに供給し、候補QAPを生成する。
特に,事前学習したT5モデルをトランスフォーマーとし,SQuADデータセットを微調整データセットとし,TP3がガオカオENデータセットに高い品質のQAPを生成することを示す。
関連論文リスト
- VST++: Efficient and Stronger Visual Saliency Transformer [74.26078624363274]
我々は,グローバルな長距離依存関係を探索する,効率的で強力なVST++モデルを開発した。
我々は、RGB、RGB-D、RGB-T SODベンチマークデータセット上で、トランスフォーマーベースのバックボーンにまたがってモデルを評価した。
論文 参考訳(メタデータ) (2023-10-18T05:44:49Z) - QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
QAデータ拡張のための反復型ブートストラップフレームワーク(QASnowball)を導入する。
QASnowballは、教師付きサンプルのシードセットに基づいて、大規模で高品質なQAデータを反復的に生成することができる。
本研究では, 高資源の英語シナリオと中資源の中国語シナリオで実験を行い, 実験結果から, QASnowball が生成したデータによりQAモデルを容易に作成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-19T05:20:36Z) - U-shaped Transformer: Retain High Frequency Context in Time Series
Analysis [0.5710971447109949]
本稿では,変圧器の低域特性を考察し,その利点を取り入れようと試みる。
パッチマージと分割操作を導入し、異なるスケールの機能を抽出し、より大きなデータセットを使用してトランスフォーマーバックボーンを完全に活用する。
実験により、比較的低コストで複数のデータセットをまたいだ高度なレベルでモデルが動作できることが実証された。
論文 参考訳(メタデータ) (2023-07-18T07:15:26Z) - Pix4Point: Image Pretrained Standard Transformers for 3D Point Cloud
Understanding [62.502694656615496]
本稿では、プログレッシブ・ポイント・パッチ・エンベディングと、PViTと呼ばれる新しいポイント・クラウド・トランスフォーマーモデルを提案する。
PViTはTransformerと同じバックボーンを共有しているが、データに対して空腹が少ないことが示されており、Transformerは最先端技術に匹敵するパフォーマンスを実現することができる。
我々は、イメージ領域で事前訓練されたトランスフォーマーを活用して、下流のクラウド理解を強化する、シンプルで効果的なパイプライン「Pix4Point」を定式化します。
論文 参考訳(メタデータ) (2022-08-25T17:59:29Z) - Pre-training Transformer Models with Sentence-Level Objectives for
Answer Sentence Selection [99.59693674455582]
本稿では,文書内および文書間における段落レベルの意味論を取り入れた3つの新しい文レベルトランスフォーマー事前学習目標を提案する。
3つのパブリックなAS2データセットと1つの産業用AS2データセットに関する実験は、ベースラインモデルよりも事前訓練されたトランスフォーマーの実証的な優位性を実証している。
論文 参考訳(メタデータ) (2022-05-20T22:39:00Z) - DoT: An efficient Double Transformer for NLP tasks with tables [3.0079490585515343]
DoTは、問題を2つのサブタスクに分解するダブルトランスフォーマーモデルである。
少ない精度でDoTはトレーニング時間と推論時間を少なくとも50%改善することを示した。
論文 参考訳(メタデータ) (2021-06-01T13:33:53Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
時間依存nppシミュレーションデータをモデル化するために、教師付き学習方法でトランスフォーマと呼ばれる高度なテンポラルニューラルネットワークを使用する。
トランスはシーケンシャルデータの特性を学習し、テストデータセット上で約99%の分類精度で有望な性能が得られる。
論文 参考訳(メタデータ) (2021-04-09T14:26:25Z) - Spatiotemporal Transformer for Video-based Person Re-identification [102.58619642363958]
我々は、強い学習能力にもかかわらず、バニラトランスフォーマーは過剰フィットのリスクの増加に苦しむことを示しています。
そこで本研究では,合成ビデオデータからモデルを事前学習し,下流領域に伝達する新しいパイプラインを提案する。
提案アルゴリズムは,3つの人気ビデオベース人物識別ベンチマークにおいて,精度向上を実現する。
論文 参考訳(メタデータ) (2021-03-30T16:19:27Z) - End-to-End Synthetic Data Generation for Domain Adaptation of Question
Answering Systems [34.927828428293864]
本モデルでは,1つのトランスをベースとしたエンコーダデコーダネットワークをエンドツーエンドにトレーニングし,問合せと問合せの両方を生成する。
簡単に言えば、エンコーダにパスを与え、デコーダに質問と回答トークンをtokenで生成するよう依頼する。
論文 参考訳(メタデータ) (2020-10-12T21:10:18Z) - Simplifying Paragraph-level Question Generation via Transformer Language
Models [0.0]
質問生成(QG)は、ある入力テキストに対応する質問をモデルに訓練する自然言語生成タスクである。
1つのTransformerベースの一方向言語モデルで、トランスファーラーニングを利用して高品質な質問を生成することができる。
我々のQGモデルは、GPT-2 Smallから微調整され、SQuADデータセット上のいくつかの段落レベルのQGベースラインを0.95 METEORポイントで上回る。
論文 参考訳(メタデータ) (2020-05-03T14:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。