論文の概要: Simplifying Paragraph-level Question Generation via Transformer Language
Models
- arxiv url: http://arxiv.org/abs/2005.01107v4
- Date: Fri, 13 Aug 2021 07:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 06:31:24.352040
- Title: Simplifying Paragraph-level Question Generation via Transformer Language
Models
- Title(参考訳): トランスフォーマー言語モデルによる段落レベルの質問生成の簡略化
- Authors: Luis Enrico Lopez, Diane Kathryn Cruz, Jan Christian Blaise Cruz,
Charibeth Cheng
- Abstract要約: 質問生成(QG)は、ある入力テキストに対応する質問をモデルに訓練する自然言語生成タスクである。
1つのTransformerベースの一方向言語モデルで、トランスファーラーニングを利用して高品質な質問を生成することができる。
我々のQGモデルは、GPT-2 Smallから微調整され、SQuADデータセット上のいくつかの段落レベルのQGベースラインを0.95 METEORポイントで上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Question generation (QG) is a natural language generation task where a model
is trained to ask questions corresponding to some input text. Most recent
approaches frame QG as a sequence-to-sequence problem and rely on additional
features and mechanisms to increase performance; however, these often increase
model complexity, and can rely on auxiliary data unavailable in practical use.
A single Transformer-based unidirectional language model leveraging transfer
learning can be used to produce high quality questions while disposing of
additional task-specific complexity. Our QG model, finetuned from GPT-2 Small,
outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95
METEOR points. Human evaluators rated questions as easy to answer, relevant to
their context paragraph, and corresponding well to natural human speech. Also
introduced is a new set of baseline scores on the RACE dataset, which has not
previously been used for QG tasks. Further experimentation with varying model
capacities and datasets with non-identification type questions is recommended
in order to further verify the robustness of pretrained Transformer-based LMs
as question generators.
- Abstract(参考訳): 質問生成(qg)は、モデルが入力テキストに対応する質問をするように訓練される自然言語生成タスクである。
直近のアプローチでは、QGはシーケンス対シーケンスの問題であり、性能向上のための追加機能やメカニズムに依存しているが、これはしばしばモデルの複雑さを増大させ、実用的な利用では利用できない補助的なデータに頼ることができる。
トランスフォーマーベースの一方向一方向言語モデルは、タスク固有の複雑さを処理しながら高品質な質問を生成するために使用できる。
我々のQGモデルは、GPT-2 Smallから微調整され、SQuADデータセット上のいくつかの段落レベルのQGベースラインを0.95 METEORポイントで上回る。
人間の評価者は、質問は答えが簡単で、文脈の段落に関連があり、自然な人間のスピーチによく対応していると評価した。
また、以前QGタスクに使用されていなかったRASデータセットに新しいベースラインスコアが導入された。
事前学習したトランスフォーマーベースのLMを質問生成器として頑健性を検証するため, 様々なモデル容量と非識別型質問付きデータセットのさらなる実験が推奨されている。
関連論文リスト
- Diversity Enhanced Narrative Question Generation for Storybooks [4.043005183192124]
マルチクエスト生成モデル(mQG)を導入し,複数の,多様な,回答可能な質問を生成する。
生成した質問の応答性を検証するために,SQuAD2.0の微調整された質問応答モデルを用いる。
mQGは、強力なベースラインの中で、様々な評価指標で有望な結果を示している。
論文 参考訳(メタデータ) (2023-10-25T08:10:04Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
本稿では、与えられたコンテキストと回答から質問を生成する問題に対処し、特に拡張されたコンテキストをまたいだマルチホップ推論を必要とする質問に焦点をあてる。
具体的には、キーフレーズを同時に選択して完全な回答を生成するFA-modelと、生成した全回答を付加的な入力として取り込んだQ-modelの2つのコンポーネントを含む。
論文 参考訳(メタデータ) (2023-10-20T13:57:01Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Generative Language Models for Paragraph-Level Question Generation [79.31199020420827]
強力な生成モデルが質問生成(QG)の最近の進歩につながっている
標準化された資源が存在しないため,QG研究の進歩を測定することは困難である。
我々はQGのベンチマークであるQG-Benchを導入し、既存のQGデータセットを標準QG設定に変換することで、既存の質問応答データセットを統一する。
論文 参考訳(メタデータ) (2022-10-08T10:24:39Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - EQG-RACE: Examination-Type Question Generation [21.17100754955864]
本論文では, RACEから抽出したデータセットをもとに, 試験型質問生成手法 (EQG-RACE) を提案する。
EQG-RACEでは、離散的な回答情報を扱うための2つの主要な戦略と、長い文脈における推論が採用されています。
実験結果は、ベースラインよりも優れたEQG-RACEの最先端の性能を示しています。
論文 参考訳(メタデータ) (2020-12-11T03:52:17Z) - Tell Me How to Ask Again: Question Data Augmentation with Controllable
Rewriting in Continuous Space [94.8320535537798]
機械読解(MRC)、質問生成、質問答え自然言語推論タスクのための制御可能な書き換えベースの質問データ拡張(CRQDA)。
質問データ拡張タスクを制約付き質問書き換え問題として扱い、コンテキスト関連、高品質、多様な質問データサンプルを生成する。
論文 参考訳(メタデータ) (2020-10-04T03:13:46Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
非構造化テキストを文脈として与えられたQAペアを生成するための条件付き変分オートエンコーダ(HCVAE)を提案する。
我々のモデルは、トレーニングにわずかなデータしか使わず、両方のタスクの全てのベースラインに対して印象的なパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2020-05-28T08:26:06Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。