Qualitative Differences Between Evolutionary Strategies and
Reinforcement Learning Methods for Control of Autonomous Agents
- URL: http://arxiv.org/abs/2205.07592v1
- Date: Mon, 16 May 2022 11:51:36 GMT
- Title: Qualitative Differences Between Evolutionary Strategies and
Reinforcement Learning Methods for Control of Autonomous Agents
- Authors: Nicola Milano and Stefano Nolfi
- Abstract summary: We focus on two popular state-of-the-art algorithms: the OpenAI-ES evolutionary strategy and the Proximal Policy Optimization (PPO) reinforcement learning algorithm.
We analyze how the methods differ with respect to: (i) general efficacy, (ii) ability to cope with sparse rewards, (iii) propensity/capacity to discover minimal solutions, (iv) dependency on reward shaping, and (v) ability to cope with variations of the environmental conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we analyze the qualitative differences between evolutionary
strategies and reinforcement learning algorithms by focusing on two popular
state-of-the-art algorithms: the OpenAI-ES evolutionary strategy and the
Proximal Policy Optimization (PPO) reinforcement learning algorithm -- the most
similar methods of the two families. We analyze how the methods differ with
respect to: (i) general efficacy, (ii) ability to cope with sparse rewards,
(iii) propensity/capacity to discover minimal solutions, (iv) dependency on
reward shaping, and (v) ability to cope with variations of the environmental
conditions. The analysis of the performance and of the behavioral strategies
displayed by the agents trained with the two methods on benchmark problems
enable us to demonstrate qualitative differences which were not identified in
previous studies, to identify the relative weakness of the two methods, and to
propose ways to ameliorate some of those weakness. We show that the
characteristics of the reward function has a strong impact which vary
qualitatively not only for the OpenAI-ES and the PPO but also for alternative
reinforcement learning algorithms, thus demonstrating the importance of
optimizing the characteristic of the reward function to the algorithm used.
Related papers
- Exploring the Generalization Capabilities of AID-based Bi-level Optimization [50.3142765099442]
We present two types of bi-level optimization methods: approximate implicit differentiation (AID)-based and iterative differentiation (D)-based approaches.
AID-based methods cannot be easily transformed but must stay in the two-level structure.
We demonstrate the effectiveness and potential applications of these methods on real-world tasks.
arXiv Detail & Related papers (2024-11-25T04:22:17Z) - Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
This paper tackles the challenge of learning non-Markovian optimal execution strategies in dynamic financial markets.
We introduce a novel actor-critic algorithm based on Deep Deterministic Policy Gradient (DDPG)
We show that our algorithm successfully approximates the optimal execution strategy.
arXiv Detail & Related papers (2024-10-17T12:38:08Z) - Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on
Computational Fluid Dynamics Problems [2.1756081703276]
We use two real-world computational fluid dynamics problems to compare the performance of eleven state-of-the-art single-objective SAEAs.
Our findings suggest that the more recently published methods, as well as the techniques that utilize differential evolution as one of their optimization mechanisms, perform significantly better than the other considered methods.
arXiv Detail & Related papers (2024-02-26T09:58:36Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Exploring Novel Quality Diversity Methods For Generalization in
Reinforcement Learning [0.0]
The Reinforcement Learning field is strong on achievements and weak on reapplication.
This paper asks whether the method of training networks improves their generalization.
arXiv Detail & Related papers (2023-03-26T00:23:29Z) - Distillation Policy Optimization [5.439020425819001]
We introduce an actor-critic learning framework that harmonizes two data sources for both evaluation and control.
This framework incorporates variance reduction mechanisms, including a unified advantage estimator (UAE) and a residual baseline.
Our results showcase substantial enhancements in sample efficiency for on-policy algorithms, effectively bridging the gap to the off-policy approaches.
arXiv Detail & Related papers (2023-02-01T15:59:57Z) - Lexicographic Multi-Objective Reinforcement Learning [65.90380946224869]
We present a family of both action-value and policy gradient algorithms that can be used to solve such problems.
We show how our algorithms can be used to impose safety constraints on the behaviour of an agent, and compare their performance in this context with that of other constrained reinforcement learning algorithms.
arXiv Detail & Related papers (2022-12-28T10:22:36Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
We propose an off-policy sample efficient approach that requires no adversarial training or min-max optimization.
Our empirical results show that D2-Imitation is effective in achieving good sample efficiency, outperforming several off-policy extension approaches of adversarial imitation.
arXiv Detail & Related papers (2021-12-11T19:36:19Z) - Behavior-based Neuroevolutionary Training in Reinforcement Learning [3.686320043830301]
This work presents a hybrid algorithm that combines neuroevolutionary optimization with value-based reinforcement learning.
For this purpose, we consolidate different methods to generate and optimize agent policies, creating a diverse population.
Our results indicate that combining methods can enhance the sample efficiency and learning speed for evolutionary approaches.
arXiv Detail & Related papers (2021-05-17T15:40:42Z) - Inverse Reinforcement Learning with Explicit Policy Estimates [19.159290496678004]
Various methods for solving the inverse reinforcement learning problem have been developed independently in machine learning and economics.
We show that they all belong to a class of optimization problems, characterized by a common form of gradient, the associated policy and the objective.
Using insights which emerge from our study of this class of optimization problems, we identify various problem scenarios and investigate each method's suitability for these problems.
arXiv Detail & Related papers (2021-03-04T07:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.