Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on
Computational Fluid Dynamics Problems
- URL: http://arxiv.org/abs/2402.16455v1
- Date: Mon, 26 Feb 2024 09:58:36 GMT
- Title: Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on
Computational Fluid Dynamics Problems
- Authors: Jakub Kudela and Ladislav Dobrovsky
- Abstract summary: We use two real-world computational fluid dynamics problems to compare the performance of eleven state-of-the-art single-objective SAEAs.
Our findings suggest that the more recently published methods, as well as the techniques that utilize differential evolution as one of their optimization mechanisms, perform significantly better than the other considered methods.
- Score: 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surrogate-assisted evolutionary algorithms (SAEAs) are recently among the
most widely studied methods for their capability to solve expensive real-world
optimization problems. However, the development of new methods and benchmarking
with other techniques still relies almost exclusively on artificially created
problems. In this paper, we use two real-world computational fluid dynamics
problems to compare the performance of eleven state-of-the-art single-objective
SAEAs. We analyze the performance by investigating the quality and robustness
of the obtained solutions and the convergence properties of the selected
methods. Our findings suggest that the more recently published methods, as well
as the techniques that utilize differential evolution as one of their
optimization mechanisms, perform significantly better than the other considered
methods.
Related papers
- Exploring the Generalization Capabilities of AID-based Bi-level Optimization [50.3142765099442]
We present two types of bi-level optimization methods: approximate implicit differentiation (AID)-based and iterative differentiation (D)-based approaches.
AID-based methods cannot be easily transformed but must stay in the two-level structure.
We demonstrate the effectiveness and potential applications of these methods on real-world tasks.
arXiv Detail & Related papers (2024-11-25T04:22:17Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
Evolutionary differential equation discovery proved to be a tool to obtain equations with less a priori assumptions.
The proposed comparison approach is shown on classical model examples -- Burgers equation, wave equation, and Korteweg - de Vries equation.
arXiv Detail & Related papers (2023-06-29T15:37:19Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Exploring the effectiveness of surrogate-assisted evolutionary
algorithms on the batch processing problem [0.0]
This paper introduces a simulation of a well-known batch processing problem in the literature.
Evolutionary algorithms such as Genetic Algorithm (GA), Differential Evolution (DE) are used to find the optimal schedule for the simulation.
We then compare the quality of solutions obtained by the surrogate-assisted versions of the algorithms against the baseline algorithms.
arXiv Detail & Related papers (2022-10-31T09:00:39Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
This paper presents results on multi-objective hyperparameter optimization with uncertainty on the evaluation of Machine Learning algorithms.
We combine the sampling strategy of Tree-structured Parzen Estimators (TPE) with the metamodel obtained after training a Gaussian Process Regression (GPR) with heterogeneous noise.
Experimental results on three analytical test functions and three ML problems show the improvement over multi-objective TPE and GPR.
arXiv Detail & Related papers (2022-09-09T14:58:43Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
Several widely-used first-order saddle-point optimization methods yield an identical continuous-time ordinary differential equation (ODE) when derived naively.
However, the convergence properties of these methods are qualitatively different, even on simple bilinear games.
We adopt a framework studied in fluid dynamics to design differential equation models for several saddle-point optimization methods.
arXiv Detail & Related papers (2021-12-27T18:31:34Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - Covariance Matrix Adaptation Evolution Strategy Assisted by Principal
Component Analysis [4.658166900129066]
We will use the dimensionality reduction method Principal component analysis (PCA) to reduce the dimension during the iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
arXiv Detail & Related papers (2021-05-08T12:43:38Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.