論文の概要: PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras
- arxiv url: http://arxiv.org/abs/2205.07657v1
- Date: Mon, 16 May 2022 13:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 19:22:59.070491
- Title: PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras
- Title(参考訳): PUCK:イベントベースのカメラのための並列表面と畳み込みカーネル追跡
- Authors: Luna Gava, Marco Monforte, Massimiliano Iacono, Chiara Bartolozzi,
Arren Glover
- Abstract要約: イベントカメラは、動的環境における高速な視覚センシングを保証できるが、ロボットのエゴモーションによって引き起こされる高いデータ速度に追従できる追跡アルゴリズムを必要とする。
本稿では,EROS(Exponential Reduced Ordinal Surface)データ表現を利用してイベント・バイ・イベント処理とトラッキングを分離する新しいトラッキング手法を提案する。
エアホッケーパックが表面を滑り落ちるのをトラッキングするタスクを提案し、将来はiCubロボットを正確に時間通りに目標に到達させることが目的である。
- 参考スコア(独自算出の注目度): 4.110120522045467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low latency and accuracy are fundamental requirements when vision is
integrated in robots for high-speed interaction with targets, since they affect
system reliability and stability. In such a scenario, the choice of the sensor
and algorithms is important for the entire control loop. The technology of
event-cameras can guarantee fast visual sensing in dynamic environments, but
requires a tracking algorithm that can keep up with the high data rate induced
by the robot ego-motion while maintaining accuracy and robustness to
distractors. In this paper, we introduce a novel tracking method that leverages
the Exponential Reduced Ordinal Surface (EROS) data representation to decouple
event-by-event processing and tracking computation. The latter is performed
using convolution kernels to detect and follow a circular target moving on a
plane. To benchmark state-of-the-art event-based tracking, we propose the task
of tracking the air hockey puck sliding on a surface, with the future aim of
controlling the iCub robot to reach the target precisely and on time.
Experimental results demonstrate that our algorithm achieves the best
compromise between low latency and tracking accuracy both when the robot is
still and when moving.
- Abstract(参考訳): 低レイテンシと精度は、システムの信頼性と安定性に影響を与えるため、目標との高速インタラクションのためにビジョンをロボットに統合する際の基本的な要件である。
このようなシナリオでは、制御ループ全体においてセンサとアルゴリズムの選択が重要である。
イベントカメラの技術は、動的環境における高速な視覚的センシングを保証できるが、ロボットのエゴモーションによって引き起こされる高いデータ速度に追従する追跡アルゴリズムが必要である。
本稿では,EROS(Exponential Reduced Ordinal Surface)データ表現を利用してイベント・バイ・イベント処理とトラッキング処理を分離する新しいトラッキング手法を提案する。
後者は畳み込みカーネルを用いて平面上を移動する円ターゲットを検出して追従する。
最先端のイベントベーストラッキングのベンチマークを行うため,今後,icubロボットが目標に正確に到達できるように制御する目的で,表面上で滑るエアホッケーパックを追跡するタスクを提案する。
実験の結果,ロボットの動作中と移動中の両方において,低レイテンシと追跡精度の最良の妥協が達成された。
関連論文リスト
- Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
複雑なトラフィックシナリオを通じて、より安全で効率的なナビゲーションを実現する上で、マルチオブジェクトトラッキングは重要な役割を果たす。
本稿では,自律走行システムにおける複数物体追跡の精度とロバスト性を高めるために,レーダデータとカメラデータを統合した新しいディープラーニング方式を提案する。
論文 参考訳(メタデータ) (2024-07-10T21:09:09Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
本稿では,深層学習に基づく符号付き距離計算の高速化と幾何衝突チェッカーの精度保証を併用したアルゴリズムを提案する。
シミュレーションおよび実世界のロボット実験において、我々のアプローチを検証するとともに、商用ビンピッキングアプリケーションを高速化できることを実証する。
論文 参考訳(メタデータ) (2024-02-23T12:06:48Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
イベントカメラは、RGBビデオの標準アクション認識と比較して、新しい機会を提供する。
本研究では,最初にイベントフレーム当たりの空間埋め込みを取得するビデオトランスフォーマーネットワーク(VTN)という,計算効率のよいモデルを用いる。
イベントデータのスパースできめ細かい性質にVTNをよりよく採用するために、イベントコントラストロス(mathcalL_EC$)とイベント固有の拡張を設計する。
論文 参考訳(メタデータ) (2023-08-25T23:51:07Z) - Event Camera-based Visual Odometry for Dynamic Motion Tracking of a
Legged Robot Using Adaptive Time Surface [5.341864681049579]
イベントカメラは高時間分解能とダイナミックレンジを提供しており、高速移動時のぼやけたRGB画像の問題を排除できる。
本稿では,従来の時間面におけるホワイトアウト問題とブラックアウト問題に対処する適応時間面(ATS)手法を提案する。
最後に,RGBとイベントベースの地図と画像の両方で3D-2Dアライメントを同時に行う非線形ポーズ最適化式を提案する。
論文 参考訳(メタデータ) (2023-05-15T19:03:45Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
イベントカメラが優れており、高速移動物体の衝突位置を正確に推定するアプリケーションを実証する。
イベントデータを低レイテンシでエンコードするために,Binary Event History Image(BEHI)と呼ばれる軽量なイベント表現を導入する。
計算制約のある組込みプラットフォーム上でも最大13m/sの速さで, 異なる場所をターゲットとした球のキャッチにおいて, 81%の成功率を達成することができることを示す。
論文 参考訳(メタデータ) (2023-04-14T15:23:28Z) - Fast Trajectory End-Point Prediction with Event Cameras for Reactive
Robot Control [4.110120522045467]
本稿では,これらの問題を克服するために,イベントカメラの低レイテンシ,動作駆動サンプリング,データ圧縮特性を活用することを提案する。
ユースケースとして、私たちはパンダのロボットアームを使って、テーブルの上で跳ねるボールをインターセプトします。
シミュレーションでネットワークをトレーニングし、データセットの取得を高速化し、実際の軌道上でモデルを微調整します。
論文 参考訳(メタデータ) (2023-02-27T14:14:52Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - Neuromorphic Eye-in-Hand Visual Servoing [0.9949801888214528]
イベントカメラは、低レイテンシと広いダイナミックレンジで人間のような視覚機能を提供する。
本稿では,イベントカメラとスイッチング制御戦略を用いて,探索,到達,把握を行う視覚サーボ手法を提案する。
実験は、異なる形状の物体を追跡して把握する手法の有効性を、再学習を必要とせずに証明する。
論文 参考訳(メタデータ) (2020-04-15T23:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。