論文の概要: Neural Implicit Swept Volume Models for Fast Collision Detection
- arxiv url: http://arxiv.org/abs/2402.15281v3
- Date: Wed, 13 Mar 2024 08:34:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 17:27:38.606406
- Title: Neural Implicit Swept Volume Models for Fast Collision Detection
- Title(参考訳): 高速衝突検出のためのニューラルインプシトリ・スプープ体積モデル
- Authors: Dominik Joho, Jonas Schwinn, Kirill Safronov
- Abstract要約: 本稿では,深層学習に基づく符号付き距離計算の高速化と幾何衝突チェッカーの精度保証を併用したアルゴリズムを提案する。
シミュレーションおよび実世界のロボット実験において、我々のアプローチを検証するとともに、商用ビンピッキングアプリケーションを高速化できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collision detection is one of the most time-consuming operations during
motion planning. Thus, there is an increasing interest in exploring machine
learning techniques to speed up collision detection and sampling-based motion
planning. A recent line of research focuses on utilizing neural signed distance
functions of either the robot geometry or the swept volume of the robot motion.
Building on this, we present a novel neural implicit swept volume model to
continuously represent arbitrary motions parameterized by their start and goal
configurations. This allows to quickly compute signed distances for any point
in the task space to the robot motion. Further, we present an algorithm
combining the speed of the deep learning-based signed distance computations
with the strong accuracy guarantees of geometric collision checkers. We
validate our approach in simulated and real-world robotic experiments, and
demonstrate that it is able to speed up a commercial bin picking application.
- Abstract(参考訳): 衝突検出は、運動計画において最も時間を要する操作の1つである。
このようにして、衝突検出とサンプリングに基づくモーションプランニングを高速化する機械学習技術の研究への関心が高まっている。
最近の研究は、ロボットの幾何学的、または、ロボットの動きの旋回体積のニューラルサインされた距離関数の活用に焦点を当てている。
そこで我々は,その開始とゴール設定によってパラメータ化される任意の動きを連続的に表現するニューラル暗黙ボリュームモデルを提案する。
これにより、ロボットの動きに対するタスク空間内の任意の点の符号付き距離を素早く計算することができる。
さらに,深層学習に基づく符号付き距離計算の高速化と幾何衝突チェッカーの精度保証を併用したアルゴリズムを提案する。
シミュレーションおよび実世界のロボット実験において、我々のアプローチを検証するとともに、商用ビンピッキングアプリケーションを高速化できることを実証する。
関連論文リスト
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-10T02:37:36Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
現在、人間は科学的な目的を達成するためにロボットを駆動しているが、ロボットの位置によっては、情報交換と駆動コマンドがミッション遂行に不適切な遅延を引き起こす可能性がある。
科学的目的と探索戦略で符号化された自律ロボットは、通信遅延を発生させず、ミッションをより迅速に達成することができる。
能動学習アルゴリズムは知的探索の能力を提供するが、その基盤となるモデル構造は、環境の理解を正確に形成する際に、能動学習アルゴリズムの性能を変化させる。
論文 参考訳(メタデータ) (2023-09-28T02:45:14Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Progressive Learning for Physics-informed Neural Motion Planning [1.9798034349981157]
モーションプランニングは、衝突のないロボットの動き経路を見つけるための高速な方法を必要とする、中核的なロボティクス問題の1つである。
近年の進歩は、運動計画のためのアイコン方程式を直接解く物理インフォームドNMPアプローチにつながっている。
本稿では,ニューラルネットワークをエキスパートデータなしで学習するための新しい進化的学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T12:41:05Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras [4.110120522045467]
イベントカメラは、動的環境における高速な視覚センシングを保証できるが、ロボットのエゴモーションによって引き起こされる高いデータ速度に追従できる追跡アルゴリズムを必要とする。
本稿では,EROS(Exponential Reduced Ordinal Surface)データ表現を利用してイベント・バイ・イベント処理とトラッキングを分離する新しいトラッキング手法を提案する。
エアホッケーパックが表面を滑り落ちるのをトラッキングするタスクを提案し、将来はiCubロボットを正確に時間通りに目標に到達させることが目的である。
論文 参考訳(メタデータ) (2022-05-16T13:23:52Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
本稿では、複数の低計算NAOロボットがカメラビューにおける物体のリアルタイム検出、認識、位置決めを行うことを可能にする新しいアーキテクチャについて述べる。
オブジェクト検出と局所化のためのアルゴリズムは,複数のシナリオにおける屋内実験に基づくYOLOv3の実証的な修正である。
このアーキテクチャは、カメラフィードからニューラルネットにリアルタイムフレームを供給し、その結果を使ってロボットを誘導する効果的なエンドツーエンドパイプラインも備えている。
論文 参考訳(メタデータ) (2020-01-20T05:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。