論文の概要: Towards Space-to-Ground Data Availability for Agriculture Monitoring
- arxiv url: http://arxiv.org/abs/2205.07721v1
- Date: Mon, 16 May 2022 14:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 15:17:10.559911
- Title: Towards Space-to-Ground Data Availability for Agriculture Monitoring
- Title(参考訳): 農業モニタリングのための空間間データ提供に向けて
- Authors: George Choumos, Alkiviadis Koukos, Vasileios Sitokonstantinou,
Charalampos Kontoes
- Abstract要約: 本稿では,クラウドソーシングプラットフォームであるMapillaryのストリートレベル画像とともに,Sentinel-1レーダとSentinel-2光画像時系列を含む地上空間データセットを提案する。
これらの異なるデータドメイン上で機械学習とディープラーニングのアルゴリズムをトレーニングし、意思決定の信頼性を高めるための融合技術の可能性を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent advances in machine learning and the availability of free and open
big Earth data (e.g., Sentinel missions), which cover large areas with high
spatial and temporal resolution, have enabled many agriculture monitoring
applications. One example is the control of subsidy allocations of the Common
Agricultural Policy (CAP). Advanced remote sensing systems have been developed
towards the large-scale evidence-based monitoring of the CAP. Nevertheless, the
spatial resolution of satellite images is not always adequate to make accurate
decisions for all fields. In this work, we introduce the notion of
space-to-ground data availability, i.e., from the satellite to the field, in an
attempt to make the best out of the complementary characteristics of the
different sources. We present a space-to-ground dataset that contains
Sentinel-1 radar and Sentinel-2 optical image time-series, as well as
street-level images from the crowdsourcing platform Mapillary, for grassland
fields in the area of Utrecht for 2017. The multifaceted utility of our dataset
is showcased through the downstream task of grassland classification. We train
machine and deep learning algorithms on these different data domains and
highlight the potential of fusion techniques towards increasing the reliability
of decisions.
- Abstract(参考訳): 機械学習の最近の進歩と、空間的および時間的解像度の高い広い領域をカバーする、自由でオープンなビッグアースデータ(例えば、センチネルミッション)の可用性により、多くの農業モニタリングアプリケーションを実現している。
1つの例は、共通農業政策(CAP)の補助金配分の制御である。
CAPの大規模モニタリングに向けて,高度リモートセンシングシステムを開発した。
それでも、衛星画像の空間分解能は、すべての分野で正確な決定を行うのに必ずしも適切ではない。
本研究では,衛星からフィールドまでの空間間データ可用性の概念を導入し,異なる情報源の相補的特性を最大限に活用する。
我々は、2017年のユトレヒト地域の草原用クラウドソーシングプラットフォームMapillaryのストリートレベル画像とともに、Sentinel-1レーダとSentinel-2光画像時系列を含む地上空間データセットを提案する。
草地分類の下流課題を通じて,本データセットの多面的有用性を示す。
これらの異なるデータ領域で機械学習とディープラーニングのアルゴリズムを訓練し、決定の信頼性を高めるための融合技術の可能性を強調する。
関連論文リスト
- Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
我々は、異なる視点から同期シーンを記録するビデオデータセットであるMultiview Aerial Visual RECgnition(MAVREC)を提示する。
MAVRECは約2.5時間、業界標準の2.7K解像度ビデオシーケンス、0.5万フレーム以上のフレーム、11万の注釈付きバウンディングボックスで構成されている。
これにより、MAVRECは地上および空中ビューのデータセットとして最大であり、ドローンベースのデータセットの中では4番目に大きい。
論文 参考訳(メタデータ) (2023-12-07T18:59:14Z) - Extended Agriculture-Vision: An Extension of a Large Aerial Image
Dataset for Agricultural Pattern Analysis [11.133807938044804]
農業ビジョンデータセットの改良版(Chiu et al., 2020b)をリリースする。
このデータセットは,3600大,高解像度(10cm/ピクセル),フルフィールド,赤緑色,近赤外画像の事前トレーニングにより拡張する。
下流分類とセマンティックセグメンテーションの両タスクにおいて、異なるコントラスト学習アプローチをベンチマークすることで、このデータの有用性を実証する。
論文 参考訳(メタデータ) (2023-03-04T17:35:24Z) - Big Earth Data and Machine Learning for Sustainable and Resilient
Agriculture [0.0]
この論文は、我々の時代の高品質でオープンな地球観測データによって提供される前例のない機会を認識している。
持続的で回復力のある農業のためのアプリケーションを開発するために、機械学習とビッグデータメソッドを導入している。
論文 参考訳(メタデータ) (2022-11-22T20:58:54Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - A Data Cube of Big Satellite Image Time-Series for Agriculture
Monitoring [0.0]
共通農業政策(CAP)の近代化は、大規模かつ頻繁な農地の監視を必要とする。
我々は、光学式および合成開口レーダ(SAR)画像の多次元立方体への発見、前処理、インデックス化のための自動化、モジュール化、エンドツーエンドのフレームワークである農業監視データキューブ(ADC)を提案する。
また、ADC上に強力なツールセットを提供しており、i) 下流の機械学習タスクを配信するためのビッグデータの分析可能な特徴空間の生成、i) 監視に関連するサービスを通じての衛星画像時系列(SITS)分析のサポートを含む。
論文 参考訳(メタデータ) (2022-05-16T15:26:23Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - Utilizing Satellite Imagery Datasets and Machine Learning Data Models to
Evaluate Infrastructure Change in Undeveloped Regions [0.0]
本研究の目的は、鉄道などの大規模インフラプロジェクトを対象とした自動監視により、建設の方向性を定義し予測するための信頼性の高い指標を決定することである。
利用可能な衛星データを用いて3Dメッシュとデジタル表面モデル(DSM)を作成することにより、輸送経路を効果的に予測できることを期待する。
論文 参考訳(メタデータ) (2020-09-01T02:11:14Z) - Attentive Weakly Supervised land cover mapping for object-based
satellite image time series data with spatial interpretation [4.549831511476249]
本稿では,粗粒度ラベルの弱さをインテリジェントに活用できる,TASSELという新しいディープラーニングフレームワークを提案する。
私たちのフレームワークは、ブラックボックスをグレーにする目的で、モデル解釈可能性をサポートする追加のサイド情報も生成します。
論文 参考訳(メタデータ) (2020-04-30T10:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。