FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction
- URL: http://arxiv.org/abs/2205.07763v1
- Date: Mon, 16 May 2022 15:39:27 GMT
- Title: FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction
- Authors: Zhenpei Yang, Zhile Ren, Miguel Angel Bautista, Zaiwei Zhang, Qi Shan,
Qixing Huang
- Abstract summary: Reconstructing an accurate 3D object model from a few image observations remains a challenging problem in computer vision.
We present FvOR, a learning-based object reconstruction method that predicts accurate 3D models given a few images with noisy input poses.
- Score: 37.81077373162092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing an accurate 3D object model from a few image observations
remains a challenging problem in computer vision. State-of-the-art approaches
typically assume accurate camera poses as input, which could be difficult to
obtain in realistic settings. In this paper, we present FvOR, a learning-based
object reconstruction method that predicts accurate 3D models given a few
images with noisy input poses. The core of our approach is a fast and robust
multi-view reconstruction algorithm to jointly refine 3D geometry and camera
pose estimation using learnable neural network modules. We provide a thorough
benchmark of state-of-the-art approaches for this problem on ShapeNet. Our
approach achieves best-in-class results. It is also two orders of magnitude
faster than the recent optimization-based approach IDR. Our code is released at
\url{https://github.com/zhenpeiyang/FvOR/}
Related papers
- A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose [44.13819148680788]
We develop a novel construct-and-optimize method for sparse view synthesis without camera poses.
Specifically, we construct a solution by using monocular depth and projecting pixels back into the 3D world.
We demonstrate results on the Tanks and Temples and Static Hikes datasets with as few as three widely-spaced views.
arXiv Detail & Related papers (2024-05-06T17:36:44Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape
Prediction [77.89935657608926]
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images.
PF-LRM simultaneously estimates the relative camera poses in 1.3 seconds on a single A100 GPU.
arXiv Detail & Related papers (2023-11-20T18:57:55Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
We propose a framework that can reconstruct high-quality object-level maps for unknown objects.
Our approach takes multiple RGB-D images as input and outputs dense 3D shapes and 9-DoF poses for detected objects.
We derive a probabilistic formulation that propagates shape and pose uncertainty through two novel loss functions.
arXiv Detail & Related papers (2023-09-17T00:48:19Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - NOPE: Novel Object Pose Estimation from a Single Image [67.11073133072527]
We propose an approach that takes a single image of a new object as input and predicts the relative pose of this object in new images without prior knowledge of the object's 3D model.
We achieve this by training a model to directly predict discriminative embeddings for viewpoints surrounding the object.
This prediction is done using a simple U-Net architecture with attention and conditioned on the desired pose, which yields extremely fast inference.
arXiv Detail & Related papers (2023-03-23T18:55:43Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
This work explores reconstructing general real-world objects from a few images without known camera poses or object categories.
The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation.
Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence.
arXiv Detail & Related papers (2022-12-08T18:59:02Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
We present a weakly-supervised reconstruction-based pipeline, named NeRF-Pose, which needs only 2D object segmentation and known relative camera poses during training.
A NeRF-enabled RAN+SAC algorithm is used to estimate stable and accurate pose from the predicted correspondences.
Experiments on LineMod-Occlusion show that the proposed method has state-of-the-art accuracy in comparison to the best 6D pose estimation methods.
arXiv Detail & Related papers (2022-03-09T15:28:02Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.