Hybrid Physical-Neural ODEs for Fast N-body Simulations
- URL: http://arxiv.org/abs/2207.05509v1
- Date: Tue, 12 Jul 2022 13:06:06 GMT
- Title: Hybrid Physical-Neural ODEs for Fast N-body Simulations
- Authors: Denise Lanzieri, Fran\c{c}ois Lanusse and Jean-Luc Starck
- Abstract summary: We present a new scheme to compensate for the small-scales approximations resulting from Particle-Mesh schemes for cosmological N-body simulations.
We find that our approach outperforms PGD for the cross-correlation coefficients, and is more robust to changes in simulation settings.
- Score: 0.22419496088582863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new scheme to compensate for the small-scales approximations
resulting from Particle-Mesh (PM) schemes for cosmological N-body simulations.
This kind of simulations are fast and low computational cost realizations of
the large scale structures, but lack resolution on small scales. To improve
their accuracy, we introduce an additional effective force within the
differential equations of the simulation, parameterized by a Fourier-space
Neural Network acting on the PM-estimated gravitational potential. We compare
the results for the matter power spectrum obtained to the ones obtained by the
PGD scheme (Potential gradient descent scheme). We notice a similar improvement
in term of power spectrum, but we find that our approach outperforms PGD for
the cross-correlation coefficients, and is more robust to changes in simulation
settings (different resolutions, different cosmologies).
Related papers
- Accelerate Neural Subspace-Based Reduced-Order Solver of Deformable Simulation by Lipschitz Optimization [9.364019847856714]
Reduced-order simulation is an emerging method for accelerating physical simulations with high DOFs.
We propose a method for finding optimized subspace mappings, enabling further acceleration of neural reduced-order simulations.
We demonstrate the effectiveness of our approach through general cases in both quasi-static and dynamics simulations.
arXiv Detail & Related papers (2024-09-05T12:56:03Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Fully Convolutional Generative Machine Learning Method for Accelerating
Non-Equilibrium Greens Function Simulations [0.0879626117219674]
This work describes a novel simulation approach that combines machine learning and device modelling simulations.
We have named our new simulation approach ML-NEGF and we have implemented it in our in-house simulator called NESS.
arXiv Detail & Related papers (2023-09-17T20:43:54Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics [0.0]
We introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems.
We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.
arXiv Detail & Related papers (2022-05-05T16:20:37Z) - Physics informed machine learning with Smoothed Particle Hydrodynamics:
Hierarchy of reduced Lagrangian models of turbulence [0.6542219246821327]
This manuscript develops a hierarchy of parameterized reduced Lagrangian models for turbulent flows.
It investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators.
arXiv Detail & Related papers (2021-10-25T22:57:40Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - Augmenting Differentiable Simulators with Neural Networks to Close the
Sim2Real Gap [15.1962264049463]
We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation.
arXiv Detail & Related papers (2020-07-12T17:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.