Privacy Enhancement for Cloud-Based Few-Shot Learning
- URL: http://arxiv.org/abs/2205.07864v1
- Date: Tue, 10 May 2022 18:48:13 GMT
- Title: Privacy Enhancement for Cloud-Based Few-Shot Learning
- Authors: Archit Parnami, Muhammad Usama, Liyue Fan and Minwoo Lee
- Abstract summary: We study the privacy enhancement for the few-shot learning in an untrusted environment, e.g., the cloud.
We propose a method that learns privacy-preserved representation through the joint loss.
The empirical results show how privacy-performance trade-off can be negotiated for privacy-enhanced few-shot learning.
- Score: 4.1579007112499315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Requiring less data for accurate models, few-shot learning has shown
robustness and generality in many application domains. However, deploying
few-shot models in untrusted environments may inflict privacy concerns, e.g.,
attacks or adversaries that may breach the privacy of user-supplied data. This
paper studies the privacy enhancement for the few-shot learning in an untrusted
environment, e.g., the cloud, by establishing a novel privacy-preserved
embedding space that preserves the privacy of data and maintains the accuracy
of the model. We examine the impact of various image privacy methods such as
blurring, pixelization, Gaussian noise, and differentially private pixelization
(DP-Pix) on few-shot image classification and propose a method that learns
privacy-preserved representation through the joint loss. The empirical results
show how privacy-performance trade-off can be negotiated for privacy-enhanced
few-shot learning.
Related papers
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments.
We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task.
arXiv Detail & Related papers (2024-10-30T02:41:26Z) - Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Enhancing User-Centric Privacy Protection: An Interactive Framework through Diffusion Models and Machine Unlearning [54.30994558765057]
The study pioneers a comprehensive privacy protection framework that safeguards image data privacy concurrently during data sharing and model publication.
We propose an interactive image privacy protection framework that utilizes generative machine learning models to modify image information at the attribute level.
Within this framework, we instantiate two modules: a differential privacy diffusion model for protecting attribute information in images and a feature unlearning algorithm for efficient updates of the trained model on the revised image dataset.
arXiv Detail & Related papers (2024-09-05T07:55:55Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
We propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners.
Experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets.
arXiv Detail & Related papers (2022-12-04T08:49:14Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
We study techniques that allow individuals to limit the private information leaked in visual data.
We tackle this problem in a novel image obfuscation framework.
We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2$times$ (or up to 0.85 bits) over the non-obfuscated counterparts.
arXiv Detail & Related papers (2020-05-20T19:48:04Z) - Differentially Private Generation of Small Images [0.0]
We numerically measure the privacy-utility trade-off using parameters from $epsilon$-$delta$ differential privacy and the inception score.
Our experiments uncover a saturated training regime where an increasing privacy budget adds little to the quality of generated images.
arXiv Detail & Related papers (2020-05-02T10:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.