FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation
- URL: http://arxiv.org/abs/2410.22651v1
- Date: Wed, 30 Oct 2024 02:41:26 GMT
- Title: FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation
- Authors: Yuechun Gu, Jiajie He, Keke Chen,
- Abstract summary: In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments.
We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task.
- Score: 4.772368796656325
- License:
- Abstract: Training data privacy has been a top concern in AI modeling. While methods like differentiated private learning allow data contributors to quantify acceptable privacy loss, model utility is often significantly damaged. In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments. In controlled data access, authorized model builders work in a restricted environment to access sensitive data, which can fully preserve data utility with reduced risk of data leak. However, unlike differential privacy, there is no quantitative measure for individual data contributors to tell their privacy risk before participating in a machine learning task. We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task. The demo source code will be available at \url{https://github.com/RhincodonE/demo_privacy_scoring}.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Privacy Implications of Retrieval-Based Language Models [26.87950501433784]
We present the first study of privacy risks in retrieval-based LMs, particularly $k$NN-LMs.
We find that $k$NN-LMs are more susceptible to leaking private information from their private datastore than parametric models.
arXiv Detail & Related papers (2023-05-24T08:37:27Z) - Differentially Private Synthetic Data Generation via
Lipschitz-Regularised Variational Autoencoders [3.7463972693041274]
It is often overlooked that generative models are prone to memorising many details of individual training records.
In this paper we explore an alternative approach for privately generating data that makes direct use of the inherentity in generative models.
arXiv Detail & Related papers (2023-04-22T07:24:56Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
We propose three novel methods to support training an ML model with different personalized privacy guarantees within the training data.
Our experiments show that our personalized privacy methods yield higher accuracy models than the non-personalized baseline.
arXiv Detail & Related papers (2022-02-21T20:16:27Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
Massive data collection required for deep learning presents obvious privacy issues.
Users personal, highly sensitive data such as photos and voice recordings are kept indefinitely by the companies that collect it.
Deep neural networks are susceptible to various inference attacks as they remember information about their training data.
arXiv Detail & Related papers (2020-06-23T01:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.