論文の概要: Learning Car Speed Using Inertial Sensors
- arxiv url: http://arxiv.org/abs/2205.07883v1
- Date: Sun, 15 May 2022 17:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 13:05:29.106409
- Title: Learning Car Speed Using Inertial Sensors
- Title(参考訳): 慣性センサを用いた車速学習
- Authors: Maxim Freydin and Barak Or
- Abstract要約: ディープニューラルネットワーク(DNN)は、都市部で運転する車の速度を推定するために訓練される。
イスラエルのアシュドッド市では、グローバルなナビゲーション衛星システムを備えた車で3時間分のデータを収集した。
トレーニングされたモデルでは、位置更新を使わずに、4分間のドライブで位置精度を大幅に向上することが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A deep neural network (DNN) is trained to estimate the speed of a car driving
in an urban area using as input a stream of measurements from a low-cost
six-axis inertial measurement unit (IMU). Three hours of data was collected by
driving through the city of Ashdod, Israel in a car equipped with a global
navigation satellite system (GNSS) real time kinematic (RTK) positioning device
and a synchronized IMU. Ground truth labels for the car speed were calculated
using the position measurements obtained at the high rate of 50 [Hz]. A DNN
architecture with long short-term memory layers is proposed to enable
high-frequency speed estimation that accounts for previous inputs history and
the nonlinear relation between speed, acceleration, and angular velocity. A
simplified aided dead reckoning localization scheme is formulated to assess the
trained model which provides the speed pseudo-measurement. The trained model is
shown to substantially improve the position accuracy during a 4 minutes drive
without the use of GNSS position updates.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、低コストの6軸慣性測定ユニット(IMU)から測定のストリームを入力として、都市部における自動車運転の速度を推定するために訓練される。
3時間のデータをイスラエルのアシュドッド市を走行し、グローバルナビゲーション衛星システム(GNSS)リアルタイムキネマティック(RTK)位置決め装置と同期IMUを備えた車で収集した。
高速50[Hz]で得られた位置測定値を用いて, 自動車走行速度の真理ラベルを算出した。
従来の入力履歴と速度,加速度,角速度の非線形関係を考慮した高速な速度推定を実現するために,長期記憶層を有するDNNアーキテクチャを提案する。
高速擬似測定を行うトレーニングモデルを評価するために,簡易な補足型デッドレコメンドローカライズ方式を定式化した。
トレーニングされたモデルは、GNSS位置更新を使わずに、4分間のドライブ中の位置精度を大幅に向上させる。
関連論文リスト
- Learning Position From Vehicle Vibration Using an Inertial Measurement Unit [2.1213500139850012]
本稿では,グローバルナビゲーション衛星システム(GNSS)に依存しない車両位置決め手法を提案する。
従来のアプローチは特定の環境での干渉に弱いため、都市キャニオンやフライオーバーや低受信エリアなどの状況では信頼性が低い。
本研究では,慣性計測ユニット(IMU)センサで得られた加速度計およびジャイロスコープ測定から道路信号の学習に基づく車両位置決め手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T18:55:00Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
インテリジェントな無線デバイス群は、ドローンの助けを借りて共有ニューラルネットワークモデルを訓練する。
提案したフレームワークは,トレーニングの大幅な高速化を実現し,ドローンホバリング時間の平均24%と87%の削減を実現している。
論文 参考訳(メタデータ) (2023-03-03T23:46:25Z) - Deep Learning for Inertial Sensor Alignment [1.9773109138840514]
慣性測定ユニット(IMU)を装備したスマートフォンのヨー装着角度を学習し,車に装着するデータ駆動型アプローチを提案する。
提案モデルは、IMUからの加速度計とジャイロスコープのみを入力として使用する。
トレーニングされたモデルはAndroidデバイスにデプロイされ、推定されたヨー装着角度の精度をテストするためにリアルタイムで評価される。
論文 参考訳(メタデータ) (2022-12-10T07:50:29Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation [12.572597882082054]
本稿では,推定DVL速度ベクトルを回帰するエンドツーエンドのディープラーニングフレームワークであるBeamsNetを提案する。
その結果,提案手法はDVL速度ベクトルの推定において60%以上の改善を達成できた。
論文 参考訳(メタデータ) (2022-06-27T19:38:38Z) - CTIN: Robust Contextual Transformer Network for Inertial Navigation [20.86392550313961]
Inertial Navigation(CTIN)のための頑健なCon Transformerベースのネットワークを提案し,速度と軌道を正確に予測する。
CTINは非常に堅牢で、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2021-12-03T19:57:34Z) - A Deep Learning Approach To Dead-Reckoning Navigation For Autonomous
Underwater Vehicles With Limited Sensor Payloads [0.0]
自律型水中車両(AUV)の相対水平速度を予測するためにリカレントニューラルネットワーク(RNN)を開発した。
RNNネットワークは、ドップラー速度ロガー(DVL)が地上の真理速度を提供する実験データを用いて訓練される。
相対速度の予測は、北と東の位置を近似するデッドレコンディングアルゴリズムで実施された。
論文 参考訳(メタデータ) (2021-10-01T21:40:10Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。