Quantum Simulation of Light-Front QCD for Jet Quenching in Nuclear
Environments
- URL: http://arxiv.org/abs/2205.07902v3
- Date: Tue, 27 Dec 2022 07:54:36 GMT
- Title: Quantum Simulation of Light-Front QCD for Jet Quenching in Nuclear
Environments
- Authors: Xiaojun Yao
- Abstract summary: We develop a framework to simulate jet quenching in nuclear environments on a quantum computer.
We apply this framework to study a toy model and gluon in-medium radiation on a small lattice.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a framework to simulate jet quenching in nuclear environments on a
quantum computer. The formulation is based on the light-front Hamiltonian
dynamics of QCD. The Hamiltonian consists of three parts relevant for jet
quenching studies: kinetic, diffusion and splitting terms. In the basis made up
of $n$-particle states in momentum space, the kinetic Hamiltonian is diagonal.
Matrices representing the diffusion and splitting parts are sparse. The
diffusion part of the Hamiltonian depends on classical background gauge fields,
which need to be sampled classically before constructing quantum circuits for
the time evolution. The cost of the sampling scales linearly with the time
length of the evolution and the momentum grid volume. The framework
automatically keeps track of quantum interference and thus it can be applied to
study the Landau-Pomeranchuk-Migdal effect in cases with more than two coherent
splittings, which is beyond the scope of state-of-the-art analyses, no matter
whether the medium is static or expanding, thin or thick, hot or cold. We apply
this framework to study a toy model and gluon in-medium radiation on a small
lattice. The essence of the Landau-Pomeranchuk-Migdal effect is observed in the
quantum simulation results of both the toy model and the gluon case, which is
quantum decoherence caused by medium interactions that suppresses the total
radiation probability.
Related papers
- Simulating and comparing the quantum and classical mechanically motion of two hydrogen atoms [0.0]
A modified version of Tavis-Cummings-Hubbard model with two two-level artificial atoms in optical cavities is described.
The motion of these two atoms (nuclei) both quantum and classical mechanically is compared.
arXiv Detail & Related papers (2024-05-30T17:43:57Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Classical model emerges in quantum entanglement: Quantum Monte Carlo
study for an Ising-Heisenberg bilayer [3.7971810181403547]
We investigate a spin-$1/2$ model on a bilayer square lattice with intra-layer ferromagnetic (FM) Ising coupling and inter-layer antiferromagnetic Heisenberg interaction.
The continuous quantum phase transition which occurs at $g_c=3.045(2)$ is studied via large scale simulations.
We find the quantum entanglement Hamiltonian is a pure classical Ising model without any quantum fluctuations.
arXiv Detail & Related papers (2022-10-13T06:11:29Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dynamical hadron formation in long-range interacting quantum spin chains [0.0]
We study scattering events due to meson collisions in a quantum spin chain with long-range interactions.
We show how novel hadronic boundstates, e.g. with four constituent particles akin to tetraquarks, may form dynamically in fusion events.
We propose two controllable protocols which allow for a clear observation of dynamical hadron formation.
arXiv Detail & Related papers (2022-04-12T09:06:47Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.