Coherent light scattering from a telecom C-band quantum dot
- URL: http://arxiv.org/abs/2205.07997v2
- Date: Wed, 1 Jun 2022 17:46:24 GMT
- Title: Coherent light scattering from a telecom C-band quantum dot
- Authors: L. Wells, T. M\"uller, R. M. Stevenson, J. Skiba-Szymanska, D. A.
Ritchie, and A. J. Shields
- Abstract summary: Coherent quantum light generation at telecom wavelengths is fundamental for fibre-based network implementations.
We show that even the inelastically scattered photons have coherence times within the error bars of the Fourier limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks have the potential to transform secure communication via
quantum key distribution and enable novel concepts in distributed quantum
computing and sensing. Coherent quantum light generation at telecom wavelengths
is fundamental for fibre-based network implementations, but Fourier-limited
emission and subnatural linewidth photons have so far only been reported from
systems operating in the visible to near-infrared wavelength range. Here, we
use InAs/InP quantum dots to demonstrate photons with coherence times much
longer than the Fourier limit at telecom wavelength. Evidence of the
responsible elastic laser scattering mechanism is observed in a distinct
signature in two-photon interference measurements, and is confirmed using a
direct measurement of the emission coherence. Further, we show that even the
inelastically scattered photons have coherence times within the error bars of
the Fourier limit. Finally, we make direct use of the minimal attenuation in
fibre for these photons by measuring two-photon interference after 25 km of
fibre, thereby demonstrating indistinguishability of photons emitted about 100
000 excitation cycles apart.
Related papers
- Long-distance distribution of telecom time-energy entanglement generated on a silicon chip [10.477129627938654]
We create time-energy entanglement for photon pairs generated from an on-chip silicon ring resonator via SFWM process.
Our work paves the way for future large-scale quantum networks with connect of distant quantum nodes.
arXiv Detail & Related papers (2024-07-31T03:12:09Z) - Polarization Purity and Dispersion Characteristics of Nested Antiresonant Nodeless Hollow-Core Optical Fiber at Near- and Mid-IR Wavelengths for Quantum Communications [3.9479376216271516]
Hollow core fibers possess unparalleled polarization purity with minimal birefringence in the telecom wavelength range using continuous-wave (CW) laser light.
Our results show a polarization extinction ratio between -30 dB and -70 dB across the 1520 to 1620 nm range in CW operation, peaking at -60 dB at the 2-mum design wavelength.
Our findings highlight the potential of these fibers in emerging applications such as quantum key distribution (QKD) protocols.
arXiv Detail & Related papers (2024-05-05T16:32:28Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band [28.279056210896716]
Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet.
We demonstrate the high- throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.
Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.
arXiv Detail & Related papers (2023-04-05T15:39:22Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - An integrated whispering-gallery-mode resonator for solid-state coherent
quantum photonics [6.082529164787429]
We report on an integrated microdisk cavity containing self-assembled quantum dots to coherently route photons.
We show how this integrated system can coherently re-route photons between the drop and bus ports.
We discuss the strengths and limitations of this approach, focusing on how it can be used to increase the efficiency of quantum devices.
arXiv Detail & Related papers (2021-07-26T12:51:39Z) - Quantum interference between independent solid-state single-photon
sources separated by 300 km fiber [9.597915082806276]
We report quantum interference between two single photons from independent QDs separated by 302 km optical fiber.
Our work represents a key step to long-distance solid-state quantum networks.
arXiv Detail & Related papers (2021-06-29T16:27:28Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.