Experimental entanglement swapping through single-photon $χ^{(2)}$ nonlinearity
- URL: http://arxiv.org/abs/2411.17267v1
- Date: Tue, 26 Nov 2024 09:44:50 GMT
- Title: Experimental entanglement swapping through single-photon $χ^{(2)}$ nonlinearity
- Authors: Yoshiaki Tsujimoto, Kentaro Wakui, Tadashi Kishimoto, Shigehito Miki, Masahiro Yabuno, Hirotaka Terai, Mikio Fujiwara, Go Kato,
- Abstract summary: We demonstrate a first entanglement swapping using sum-frequency generation (SFG) between single photons in a $chi(2)$-nonlinear optical waveguide.
Our results confirm a lower bound 0.770(76) for the swapped state's fidelity, surpassing the classical limit of 0.5 successfully.
- Score: 0.8030359871216615
- License:
- Abstract: In photonic quantum information processing, quantum operations using nonlinear photon-photon interactions are vital for implementing two-qubit gates and enabling faithful entanglement swapping. However, due to the weak interaction between single photons, the all-photonic realization of such quantum operations has remained out of reach so far. Herein, we demonstrate a first entanglement swapping using sum-frequency generation (SFG) between single photons in a $\chi^{(2)}$-nonlinear optical waveguide. We show that a highly efficient, stable SFG-based Bell-state analyzer and an ultralow-dark-count superconducting single-photon detector satisfy the high signal-to-noise ratio requirement for the swapping protocol.Furthermore, the system clock is enhanced by utilizing ultrafast telecom entangled photon pair sources that operate in the GHz range. Our results confirm a lower bound 0.770(76) for the swapped state's fidelity, surpassing the classical limit of 0.5 successfully. Our findings highlight the strong potential of broadband all-single-photonic nonlinear interactions for further sophistication in long-distance quantum communication and photonic quantum computation.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - On-Demand Generation of Indistinguishable Photons in the Telecom C-Band
using Quantum Dot Devices [31.114245664719455]
We demonstrate the coherent on-demand generation of in photons in the telecom C-band from single QD devices.
The research represents a significant advancement in photon-indistinguishability of single photons emitted directly in the telecom C-band.
arXiv Detail & Related papers (2023-06-14T17:59:03Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Non-Gaussian quantum state generation by multi-photon subtraction at the
telecommunication wavelength [0.8013991054257982]
We present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons.
Results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
arXiv Detail & Related papers (2023-01-24T09:13:36Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - InGaP quantum nanophotonic integrated circuits with 1.5%
nonlinearity-to-loss ratio [0.0]
We realize quantum nanophotonic integrated circuits in thin-film InGaP with a record-high ratio of $1.5%$ between the single-photon nonlinear coupling rate and cavity-photon loss rate.
Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.
arXiv Detail & Related papers (2021-05-26T17:34:48Z) - Single-photon detection and cryogenic reconfigurability in Lithium
Niobate nanophotonic circuits [0.13854111346209866]
Lithium-Niobate-On-Insulator (LNOI) is emerging as a promising platform for integrated quantum photonic technologies.
Our results provide blueprints for implementing complex quantum photonic devices on the LNOI platform.
arXiv Detail & Related papers (2021-03-19T18:13:52Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.