Uncertainty-based Network for Few-shot Image Classification
- URL: http://arxiv.org/abs/2205.08157v1
- Date: Tue, 17 May 2022 07:49:32 GMT
- Title: Uncertainty-based Network for Few-shot Image Classification
- Authors: Minglei Yuan, Qian Xu, Chunhao Cai, Yin-Dong Zheng, Tao Wang, Tong Lu
- Abstract summary: We propose Uncertainty-Based Network, which models the uncertainty of classification results with the help of mutual information.
We show that Uncertainty-Based Network achieves comparable performance in classification accuracy compared to state-of-the-art method.
- Score: 17.912365063048263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transductive inference is an effective technique in the few-shot learning
task, where query sets update prototypes to improve themselves. However, these
methods optimize the model by considering only the classification scores of the
query instances as confidence while ignoring the uncertainty of these
classification scores. In this paper, we propose a novel method called
Uncertainty-Based Network, which models the uncertainty of classification
results with the help of mutual information. Specifically, we first data
augment and classify the query instance and calculate the mutual information of
these classification scores. Then, mutual information is used as uncertainty to
assign weights to classification scores, and the iterative update strategy
based on classification scores and uncertainties assigns the optimal weights to
query instances in prototype optimization. Extensive results on four benchmarks
show that Uncertainty-Based Network achieves comparable performance in
classification accuracy compared to state-of-the-art method.
Related papers
- Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
We show that many classification models within this framework can be recast as mixed-integer convex programs.
We then show that in the proposed problem, when the classification outcomes, "unsolvable subdata selection," is strongly-solvable.
This motivates us to develop an iterative refining strategy (IRS) to solve the classification instances.
arXiv Detail & Related papers (2020-12-22T21:09:38Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes.
We propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.
arXiv Detail & Related papers (2020-10-12T19:47:09Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.