論文の概要: Sharp asymptotics on the compression of two-layer neural networks
- arxiv url: http://arxiv.org/abs/2205.08199v1
- Date: Tue, 17 May 2022 09:45:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 20:30:03.362287
- Title: Sharp asymptotics on the compression of two-layer neural networks
- Title(参考訳): 2層ニューラルネットワークの圧縮に関するシャープ漸近
- Authors: Mohammad Hossein Amani, Simone Bombari, Marco Mondelli, Rattana
Pukdee, Stefano Rini
- Abstract要約: 我々は,Nノードを対象とする2層ニューラルネットワークを,Mノードを対象とする圧縮ネットワークに圧縮することを検討した。
最適最適化問題はEqui Tight Frame(ETF)の重み付けによって達成されると推測する。
- 参考スコア(独自算出の注目度): 19.683271092724937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the compression of a target two-layer neural network
with N nodes into a compressed network with M < N nodes. More precisely, we
consider the setting in which the weights of the target network are i.i.d.
sub-Gaussian, and we minimize the population L2 loss between the outputs of the
target and of the compressed network, under the assumption of Gaussian inputs.
By using tools from high-dimensional probability, we show that this non-convex
problem can be simplified when the target network is sufficiently
over-parameterized, and provide the error rate of this approximation as a
function of the input dimension and N . For a ReLU activation function, we
conjecture that the optimum of the simplified optimization problem is achieved
by taking weights on the Equiangular Tight Frame (ETF), while the scaling of
the weights and the orientation of the ETF depend on the parameters of the
target network. Numerical evidence is provided to support this conjecture.
- Abstract(参考訳): 本稿では,Nノードを対象とする2層ニューラルネットワークを,M<Nノードを対象とする圧縮ネットワークに圧縮する。
より正確には、ターゲットネットワークの重みがi.i.d.サブガウシアンであるような設定を考え、ガウシアン入力の仮定により、ターゲットネットワークの出力と圧縮ネットワークの出力の間の人口l2損失を最小化する。
高次元確率のツールを用いて、ターゲットネットワークが十分に過パラメータ化されている場合、この非凸問題を単純化できることを示し、入力次元とNの関数としてこの近似の誤差率を提供する。
ReLU アクティベーション関数では,重みと ETF の向きのスケーリングは対象ネットワークのパラメータに依存するが,その重みを等角的タイトフレーム (ETF) に当てはめることで,単純化された最適化問題の最適解が得られると推測する。
この予想を支持する数値的な証拠が提供される。
関連論文リスト
- Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
スパースディープラーニングは、基礎となるターゲット関数のスパース表現を復元することで、課題に対処する。
構造化された空間によって圧縮されたディープニューラルアーキテクチャは、低レイテンシ推論、データスループットの向上、エネルギー消費の削減を提供する。
本研究では, (i) Spike-and-Slab Group Lasso (SS-GL) と (ii) Spike-and-Slab Group Horseshoe (SS-GHS) を併用した過剰ノードを誘発する構造的疎いベイズニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T17:14:18Z) - Binarizing Sparse Convolutional Networks for Efficient Point Cloud
Analysis [93.55896765176414]
我々は,効率的な点群解析のためのBSC-Netと呼ばれるバイナリスパース畳み込みネットワークを提案する。
我々は,移動したスパース畳み込みにおけるサイトマッチングに最適なオプションを見つけるために,異なる検索戦略を採用している。
我々のBSC-Netは、我々の厳格なベースラインを大幅に改善し、最先端のネットワーク双対化手法より優れています。
論文 参考訳(メタデータ) (2023-03-27T13:47:06Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - Sparse Uncertainty Representation in Deep Learning with Inducing Weights [22.912675044223302]
我々はMatheronの条件付きガウスサンプリングルールを拡張し、高速な重量サンプリングを可能にする。
提案手法は,完全連結ニューラルネットワークとResNetを用いた予測および不確実性推定タスクにおける最先端の競争性能を実現する。
論文 参考訳(メタデータ) (2021-05-30T18:17:47Z) - A Probabilistic Approach to Neural Network Pruning [20.001091112545065]
FCNとCNNの2つのプルーニング技術(ランダムおよび等級ベース)の性能について理論的に検討する。
その結果、対象ネットワークから指定された任意の境界内に、表現力を持つプルーンドネットワークが存在することが判明した。
論文 参考訳(メタデータ) (2021-05-20T23:19:43Z) - Stable Recovery of Entangled Weights: Towards Robust Identification of
Deep Neural Networks from Minimal Samples [0.0]
連続した層の重みを、活性化関数とそのシフトに応じて適切な対角行列と反転行列と絡み合ういわゆる絡み合い重みを紹介します。
エンタングル重みは効率的でロバストなアルゴリズムによって完全かつ安定に近似することが証明される。
本研究は,入力出力情報をネットワークパラメータに一意かつ安定的に関連付けることができ,説明可能性の一形態を提供する。
論文 参考訳(メタデータ) (2021-01-18T16:31:19Z) - On the Principle of Least Symmetry Breaking in Shallow ReLU Models [13.760721677322072]
対象の重みに対する対称性の中期的損失は、より広範囲な設定に適用可能であることを示す。
これを受けて、我々はこの仮説を非等方性非積分布、滑らかな活性化関数、いくつかの層を持つネットワークの異なるクラスに相関させる一連の実験を行った。
論文 参考訳(メタデータ) (2019-12-26T22:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。