論文の概要: Applications of Reinforcement Learning in Deregulated Power Market: A
Comprehensive Review
- arxiv url: http://arxiv.org/abs/2205.08369v2
- Date: Fri, 12 May 2023 00:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 16:30:16.754313
- Title: Applications of Reinforcement Learning in Deregulated Power Market: A
Comprehensive Review
- Title(参考訳): 電力市場における強化学習の応用:総括的考察
- Authors: Ziqing Zhu, Ze Hu, Ka Wing Chan, Siqi Bu, Bin Zhou, Shiwei Xia
- Abstract要約: 強化学習(Reinforcement Learning)は、従来の最適化ツールと比較して利点のある、新興の機械学習技術である。
本稿では、入札とディスパッチ戦略最適化を含む電力市場の非規制運用におけるRLの適用についてレビューする。
入札やディスパッチ問題に展開する大きな可能性を持つRL手法を推奨し,議論する。
- 参考スコア(独自算出の注目度): 7.2090237123481575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing penetration of renewable generations, along with the
deregulation and marketization of power industry, promotes the transformation
of power market operation paradigms. The optimal bidding strategy and
dispatching methodology under these new paradigms are prioritized concerns for
both market participants and power system operators, with obstacles of
uncertain characteristics, computational efficiency, as well as requirements of
hyperopic decision-making. To tackle these problems, the Reinforcement Learning
(RL), as an emerging machine learning technique with advantages compared with
conventional optimization tools, is playing an increasingly significant role in
both academia and industry. This paper presents a comprehensive review of RL
applications in deregulated power market operation including bidding and
dispatching strategy optimization, based on more than 150 carefully selected
literatures. For each application, apart from a paradigmatic summary of
generalized methodology, in-depth discussions of applicability and obstacles
while deploying RL techniques are also provided. Finally, some RL techniques
that have great potentiality to be deployed in bidding and dispatching problems
are recommended and discussed.
- Abstract(参考訳): 再生可能世代の増加と電力産業の規制緩和と市場化により、電力市場運営パラダイムの転換が促進される。
これらの新たなパラダイムの下での最適入札戦略とディスパッチ手法は、不確実な特性、計算効率、および超最適意思決定の要求といった障害を伴う、市場参加者と電力系統運用者の両方にとって優先的な関心事である。
これらの問題に対処するため、従来の最適化ツールと比較して優位性を持つ機械学習技術である強化学習(RL)は、アカデミックと産業の両方において、ますます重要な役割を担っている。
本稿では,150以上の慎重に選択された文献に基づいて,入札およびディスパッチ戦略最適化を含む電力市場デリゲーテッド運用におけるrl応用について概観する。
各アプリケーションについて、一般化された方法論のパラダイム的な要約とは別に、RL技術の展開中の適用性と障害に関する詳細な議論も提供する。
最後に,入札問題やディスパッチ問題に展開する可能性の高いrl手法を推奨し,議論する。
関連論文リスト
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
強化学習(Reinforcement Learning、RL)は、エージェントが環境と対話することで学習する機械学習の分野である。
本稿では,HFT(High-Frequency Trading)シナリオに適した統計仲裁手法におけるRLの統合について述べる。
広範なシミュレーションやバックテストを通じて、RLはトレーディング戦略の適応性を高めるだけでなく、収益性指標の改善やリスク調整されたリターンの期待も示している。
論文 参考訳(メタデータ) (2023-09-13T06:15:40Z) - Domain-adapted Learning and Imitation: DRL for Power Arbitrage [1.6874375111244329]
本稿では,この二段階シミュレーションと欧州電力仲裁取引の最適化のための協調的二重エージェント強化学習手法を提案する。
電力トレーダーの取引行動を模倣してドメイン固有の知識を取り入れた2つの新しい実装を導入する。
本研究は,ドメインの知識を一般学習問題に活用することにより,性能を大幅に向上できることを実証する。
論文 参考訳(メタデータ) (2023-01-19T23:36:23Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
エージェントベースのシミュレーションは、電気市場のダイナミクスをよりよく理解するために使用される。
エージェントベースのモデルは、機械学習と人工知能を統合する機会を提供する。
我々は、エージェントベースの電気市場モデルに適用された機械学習に焦点を当てた2016年から2021年の間に発行された55の論文をレビューする。
論文 参考訳(メタデータ) (2022-06-05T14:52:26Z) - Risk-Aware Control and Optimization for High-Renewable Power Grids [11.352041887858322]
RAMCプロジェクトは、この決定論的設定からリスク認識フレームワークに移行する方法について調査している。
本稿では、RAMCがリスク対応市場クリアリングにどのようにアプローチするかをレビューし、不確実性定量化、最適化、機械学習におけるイノベーションの一部を提示する。
論文 参考訳(メタデータ) (2022-04-02T22:58:08Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
SCED(Security-Constrained Economic Dispatch)は、送信システムオペレーター(TSO)の基本最適化モデルである
本稿では,SCEDの最適解をミリ秒で予測できる機械学習(ML)モデルとして,SCEDの最適化プロキシを学習することを提案する。
数値実験は、フランスの送信システム上で報告され、リアルタイム操作と互換性のある時間枠内で、その手法が生成できることを実証する。
論文 参考訳(メタデータ) (2021-12-27T00:44:06Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
本稿では,不完全な市場状態と注文実行のための最適な行動シーケンスとのギャップを埋める,新たなユニバーサル取引ポリシー最適化フレームワークを提案する。
本研究の枠組みは,完全情報を持つ託宣教師による実践的最適実行に向けて,共通政策の学習を指導する上で有効であることを示す。
論文 参考訳(メタデータ) (2021-01-28T05:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。