論文の概要: RARITYNet: Rarity Guided Affective Emotion Learning Framework
- arxiv url: http://arxiv.org/abs/2205.08595v1
- Date: Tue, 17 May 2022 19:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 03:22:09.769487
- Title: RARITYNet: Rarity Guided Affective Emotion Learning Framework
- Title(参考訳): raritynet:rarity誘導感情学習フレームワーク
- Authors: Monu Verma and Santosh Kumar Vipparthi
- Abstract要約: RARITYNet: RARITY Guided affective emotion learning framework to learn the appearance features and identified the emotion class of face expression。
RARITYは、地域住民のラジアル・トランジショナル・パターンを符号化するために提案されている。
- 参考スコア(独自算出の注目度): 7.046069660967654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired from the assets of handcrafted and deep learning approaches, we
proposed a RARITYNet: RARITY guided affective emotion learning framework to
learn the appearance features and identify the emotion class of facial
expressions. The RARITYNet framework is designed by combining the shallow
(RARITY) and deep (AffEmoNet) features to recognize the facial expressions from
challenging images as spontaneous expressions, pose variations, ethnicity
changes, and illumination conditions. The RARITY is proposed to encode the
inter-radial transitional patterns in the local neighbourhood. The AffEmoNet:
affective emotion learning network is proposed by incorporating three feature
streams: high boost edge filtering (HBSEF) stream, to extract the edge
information of highly affected facial expressive regions, multi-scale
sophisticated edge cumulative (MSSEC) stream is to learns the sophisticated
edge information from multi-receptive fields and RARITY uplift complementary
context feature (RUCCF) stream refines the RARITY-encoded features and aid the
MSSEC stream features to enrich the learning ability of RARITYNet.
- Abstract(参考訳): 表情の特徴を学習し、表情の感情クラスを識別するために、raritynet: rarity guided affective emotion learning frameworkを提案した。
RARITYNetフレームワークは、浅い(RARITY)と深い(AffEmoNet)特徴を組み合わせることで、挑戦的な画像から自然表現、ポーズのバリエーション、民族的変化、照明条件を認識できるように設計されている。
RARITYは、地域における放射間遷移パターンを符号化するために提案されている。
The AffEmoNet: affective emotion learning network is proposed by incorporating three feature streams: high boost edge filtering (HBSEF) stream, to extract the edge information of highly affected facial expressive regions, multi-scale sophisticated edge cumulative (MSSEC) stream is to learns the sophisticated edge information from multi-receptive fields and RARITY uplift complementary context feature (RUCCF) stream refines the RARITY-encoded features and aid the MSSEC stream features to enrich the learning ability of RARITYNet.
関連論文リスト
- Self-supervised Gait-based Emotion Representation Learning from Selective Strongly Augmented Skeleton Sequences [4.740624855896404]
自己教師型歩行に基づく感情表現のための選択的強強化を利用したコントラスト学習フレームワークを提案する。
提案手法はEmotion-Gait (E-Gait) と Emilya のデータセットで検証され, 異なる評価プロトコル下での最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-05-08T09:13:10Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - StyleEDL: Style-Guided High-order Attention Network for Image Emotion
Distribution Learning [69.06749934902464]
StyleEDLと呼ばれる画像感情分布学習のためのスタイル誘導型高次アテンションネットワークを提案する。
StyleEDLは視覚内容の階層的スタイリスティック情報を探索することにより、画像のスタイリスティックな表現を対話的に学習する。
さらに、コンテンツ依存の感情表現を動的に生成するスタイリスティックなグラフ畳み込みネットワークを導入する。
論文 参考訳(メタデータ) (2023-08-06T03:22:46Z) - SimAN: Exploring Self-Supervised Representation Learning of Scene Text
via Similarity-Aware Normalization [66.35116147275568]
自己指導型表現学習は、現場テキスト認識コミュニティからかなりの注目を集めている。
表現学習スキームを生成的手法で定式化することで,この問題に対処する。
そこで我々は,異なるパターンを識別し,対応するスタイルを誘導パッチから整列するSimANモジュールを提案する。
論文 参考訳(メタデータ) (2022-03-20T08:43:10Z) - AGA-GAN: Attribute Guided Attention Generative Adversarial Network with
U-Net for Face Hallucination [15.010153819096056]
本稿では,属性誘導注意(AGA)モジュールを用いた属性誘導注意生成ネットワークを提案する。
AGA-GANとAGA-GAN+U-Netフレームワークは、他の最先端のハロシン化技術よりも優れている。
論文 参考訳(メタデータ) (2021-11-20T13:43:03Z) - An Attribute-Aligned Strategy for Learning Speech Representation [57.891727280493015]
属性選択機構によってこれらの問題に柔軟に対処できる音声表現を導出する属性整合学習戦略を提案する。
具体的には、音声表現を属性依存ノードに分解する層式表現可変オートエンコーダ(LR-VAE)を提案する。
提案手法は,IDのないSER上での競合性能と,無感情SV上でのより良い性能を実現する。
論文 参考訳(メタデータ) (2021-06-05T06:19:14Z) - Leveraging Semantic Scene Characteristics and Multi-Stream Convolutional
Architectures in a Contextual Approach for Video-Based Visual Emotion
Recognition in the Wild [31.40575057347465]
私たちは、野生のビデオベースの視覚感情認識のタスクに取り組みます。
身体および顔の特徴の抽出のみに依存する標準的な方法論は、しばしば正確な感情予測に欠ける。
我々は、シーンの特徴や属性の形で視覚的コンテキストを活用することで、この問題を軽減することを目指している。
論文 参考訳(メタデータ) (2021-05-16T17:31:59Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
我々は、ビデオベースの表情認識のための共通のCNN-RNNモデルに、GCN(Graph Convolutional Network)層を導入する。
我々は、CK+、Oulu-CASIA、MMIの3つの広く使われているデータセットと、AFEW8.0の挑戦的なワイルドデータセットについて、本手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-26T07:31:51Z) - Non-Linearities Improve OrigiNet based on Active Imaging for Micro
Expression Recognition [8.112868317921853]
ビデオの表現領域におけるアクティブな変化を1フレームに分離するために,能動画像の概念を導入する。
ビデオ中のマイクロ表現の重要な特徴を効率的に学習する,ハイブリッド局所受容場に基づく拡張現実ネットワーク(OrigiNet)を提案する。
論文 参考訳(メタデータ) (2020-05-16T13:44:49Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。