論文の概要: EmoNeXt: an Adapted ConvNeXt for Facial Emotion Recognition
- arxiv url: http://arxiv.org/abs/2501.08199v1
- Date: Tue, 14 Jan 2025 15:23:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:48.019373
- Title: EmoNeXt: an Adapted ConvNeXt for Facial Emotion Recognition
- Title(参考訳): EmoNeXt: 表情認識のための適応型ConvNeXt
- Authors: Yassine El Boudouri, Amine Bohi,
- Abstract要約: EmoNeXtは、適応型ConvNeXtアーキテクチャネットワークに基づく、表情認識のための新しいディープラーニングフレームワークである。
我々は、感情分類精度に関するFER2013データセット上で、既存の最先端ディープラーニングモデルよりもモデルの方が優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Facial expressions play a crucial role in human communication serving as a powerful and impactful means to express a wide range of emotions. With advancements in artificial intelligence and computer vision, deep neural networks have emerged as effective tools for facial emotion recognition. In this paper, we propose EmoNeXt, a novel deep learning framework for facial expression recognition based on an adapted ConvNeXt architecture network. We integrate a Spatial Transformer Network (STN) to focus on feature-rich regions of the face and Squeeze-and-Excitation blocks to capture channel-wise dependencies. Moreover, we introduce a self-attention regularization term, encouraging the model to generate compact feature vectors. We demonstrate the superiority of our model over existing state-of-the-art deep learning models on the FER2013 dataset regarding emotion classification accuracy.
- Abstract(参考訳): 顔の表情は人間のコミュニケーションにおいて重要な役割を担い、幅広い感情を表現するための強力で影響力のある手段として機能する。
人工知能とコンピュータビジョンの進歩により、ディープニューラルネットワークが顔の感情認識の効果的なツールとして登場した。
本稿では,適応型ConvNeXtアーキテクチャネットワークに基づく表情認識のための新しいディープラーニングフレームワークであるEmoNeXtを提案する。
本研究では、Spatial Transformer Network(STN)を統合し、顔の特徴豊富な領域とSqueeze-and-Excitationブロックに着目し、チャネルの依存性をキャプチャする。
さらに,自己注意型正規化項を導入し,コンパクトな特徴ベクトルを生成するようモデルに促す。
我々は、感情分類精度に関するFER2013データセット上で、既存の最先端ディープラーニングモデルよりもモデルの方が優れていることを示す。
関連論文リスト
- Emotion Detection through Body Gesture and Face [0.0]
このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
論文 参考訳(メタデータ) (2024-07-13T15:15:50Z) - Authentic Emotion Mapping: Benchmarking Facial Expressions in Real News [21.707761612280304]
本稿では,現実的なニュースビデオから抽出した顔のランドマークを用いた感情認識のための新しいベンチマークを提案する。
従来のRGB画像に依存した手法は資源集約的な手法であるのに対し、FLER(Facial Landmark Emotion Recognition)によるアプローチはシンプルで効果的な代替手段である。
論文 参考訳(メタデータ) (2024-04-21T00:14:03Z) - Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - Leveraging Previous Facial Action Units Knowledge for Emotion
Recognition on Faces [2.4158349218144393]
本稿では,感情認識のための顔行動単位(AU)認識手法を提案する。
この認識はFACS(Facial Action Coding System)に基づいており、機械学習システムによって計算される。
論文 参考訳(メタデータ) (2023-11-20T18:14:53Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Leveraging Recent Advances in Deep Learning for Audio-Visual Emotion
Recognition [2.1485350418225244]
人間の行動分析のために, 自発的なマルチモーダル感情認識が広く研究されている。
視聴覚感情認識のための深層学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-16T15:49:15Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
深層生成モデルは、自動表情編集の分野で素晴らしい成果を上げている。
連続した2次元の感情ラベルに従って顔画像の表情を操作できるモデルを提案する。
論文 参考訳(メタデータ) (2020-06-22T13:03:02Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - An adversarial learning framework for preserving users' anonymity in
face-based emotion recognition [6.9581841997309475]
本稿では,反復的手順で学習した畳み込みニューラルネットワーク(CNN)アーキテクチャに依存する逆学習フレームワークを提案する。
その結果、提案手法は、感情認識の精度を保ち、顔認証の劣化を抑えるための畳み込み変換を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-16T22:45:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。