Relevance-driven Decision Making for Safer and More Efficient Human Robot Collaboration
- URL: http://arxiv.org/abs/2409.13998v2
- Date: Fri, 18 Apr 2025 18:40:16 GMT
- Title: Relevance-driven Decision Making for Safer and More Efficient Human Robot Collaboration
- Authors: Xiaotong Zhang, Dingcheng Huang, Kamal Youcef-Toumi,
- Abstract summary: We introduce a novel concept termed relevance for Human-Robot Collaboration (HRC)<n>Relevance is a dimensionality reduction process that incorporates a continuously operating perception module.<n>We present an enhanced two-loop framework that integrates real-time and asynchronous processing to quantify relevance.
- Score: 6.009969292588733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human brain possesses the ability to effectively focus on important environmental components, which enhances perception, learning, reasoning, and decision-making. Inspired by this cognitive mechanism, we introduced a novel concept termed relevance for Human-Robot Collaboration (HRC). Relevance is a dimensionality reduction process that incorporates a continuously operating perception module, evaluates cue sufficiency within the scene, and applies a flexible formulation and computation framework. In this paper, we present an enhanced two-loop framework that integrates real-time and asynchronous processing to quantify relevance and leverage it for safer and more efficient human-robot collaboration (HRC). The two-loop framework integrates an asynchronous loop, which leverages LLM world knowledge to quantify relevance, and a real-time loop, which performs scene understanding, human intent prediction, and decision-making based on relevance. HRC decision-making is enhanced by a relevance-based task allocation method, as well as a motion generation and collision avoidance approach that incorporates human trajectory prediction. Simulations and experiments show that our methodology for relevance quantification can accurately and robustly predict the human objective and relevance, with an average accuracy of up to 0.90 for objective prediction and up to 0.96 for relevance prediction. Moreover, our motion generation methodology reduces collision cases by 63.76% and collision frames by 44.74% when compared with a state-of-the-art (SOTA) collision avoidance method. Our framework and methodologies, with relevance, guide the robot on how to best assist humans and generate safer and more efficient actions for HRC.
Related papers
- Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm [54.98788921815576]
We present a novel cooperative multi-agent reinforcement learning method called textbfLocality based textbfFactorized textbfMulti-Agent textbfActor-textbfCritic (Loc-FACMAC)
We integrate the concept of locality into critic learning, where strongly related robots form partitions during training.
Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance.
arXiv Detail & Related papers (2025-03-24T16:00:16Z) - Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection [12.2304109417748]
A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty.
In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects.
Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation.
arXiv Detail & Related papers (2025-02-12T13:05:24Z) - Relevance for Human Robot Collaboration [6.009969292588733]
This paper introduces a novel concept and scene-understanding approach termed relevance'
To accurately and efficiently quantify relevance, we developed an event-based framework that selectively triggers relevance determination.
A real-world demonstration showcases the relevance framework's ability to intelligently assist humans in everyday tasks.
arXiv Detail & Related papers (2024-09-12T04:57:34Z) - Offline Risk-sensitive RL with Partial Observability to Enhance
Performance in Human-Robot Teaming [1.3980986259786223]
We propose a method to incorporate model uncertainty, thus enabling risk-sensitive sequential decision-making.
Experiments were conducted with a group of twenty-six human participants within a simulated robot teleoperation environment.
arXiv Detail & Related papers (2024-02-08T14:27:34Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
We propose a Human and Object Disentangling Network (HODN) to model the Human-Object Interaction (HOI) relationships explicitly.
Considering that human features are more contributive to interaction, we propose a Human-Guide Linking method to make sure the interaction decoder focuses on the human-centric regions.
Our proposed method achieves competitive performance on both the V-COCO and the HICO-Det Linking datasets.
arXiv Detail & Related papers (2023-08-20T04:12:50Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Intuitive and Efficient Human-robot Collaboration via Real-time
Approximate Bayesian Inference [4.310882094628194]
Collaborative robots and end-to-end AI, promises flexible automation of human tasks in factories and warehouses.
Humans and cobots will collaborate helping each other.
For these collaborations to be effective and safe, robots need to model, predict and exploit human's intents.
arXiv Detail & Related papers (2022-05-17T23:04:44Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
We present an algorithmic approach to enable uncertainty learning for human-in-the-loop motion planning based on the implicit dual control paradigm.
Our approach relies on sampling-based approximation of dynamic programming model predictive control problem.
The resulting policy is shown to preserve the dual control effect for generic human predictive models with both continuous and categorical uncertainty.
arXiv Detail & Related papers (2022-02-15T20:40:06Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Simultaneous Learning from Human Pose and Object Cues for Real-Time
Activity Recognition [11.290467061493189]
We propose a novel approach to real-time human activity recognition, through simultaneously learning from observations of both human poses and objects involved in the human activity.
Our method outperforms previous methods and obtains real-time performance for human activity recognition with a processing speed of 104 Hz.
arXiv Detail & Related papers (2020-03-26T22:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.