論文の概要: Relational representation learning with spike trains
- arxiv url: http://arxiv.org/abs/2205.09140v1
- Date: Wed, 18 May 2022 18:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 14:54:20.253379
- Title: Relational representation learning with spike trains
- Title(参考訳): スパイク列車による関係表現学習
- Authors: Dominik Dold
- Abstract要約: 本稿では,スパイクパターンの時間領域を完全に活用することで,知識グラフのスパイクトレインによる埋め込みを学習できるモデルを提案する。
以上の結果から,リレーショナル知識をスパイクベースシステムに統合することで,イベントベースコンピューティングとデータをマージして,パワフルでエネルギー効率の高い人工知能アプリケーションや推論システムを構築する可能性を明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational representation learning has lately received an increase in
interest due to its flexibility in modeling a variety of systems like
interacting particles, materials and industrial projects for, e.g., the design
of spacecraft. A prominent method for dealing with relational data are
knowledge graph embedding algorithms, where entities and relations of a
knowledge graph are mapped to a low-dimensional vector space while preserving
its semantic structure. Recently, a graph embedding method has been proposed
that maps graph elements to the temporal domain of spiking neural networks.
However, it relies on encoding graph elements through populations of neurons
that only spike once. Here, we present a model that allows us to learn spike
train-based embeddings of knowledge graphs, requiring only one neuron per graph
element by fully utilizing the temporal domain of spike patterns. This coding
scheme can be implemented with arbitrary spiking neuron models as long as
gradients with respect to spike times can be calculated, which we demonstrate
for the integrate-and-fire neuron model. In general, the presented results show
how relational knowledge can be integrated into spike-based systems, opening up
the possibility of merging event-based computing and relational data to build
powerful and energy efficient artificial intelligence applications and
reasoning systems.
- Abstract(参考訳): リレーショナル表現学習は、例えば宇宙船の設計のための相互作用粒子、材料、産業プロジェクトなど、様々なシステムのモデリングの柔軟性から、近年関心が高まっている。
関係データを扱うための顕著な方法は知識グラフ埋め込みアルゴリズムであり、知識グラフの実体と関係は、その意味構造を維持しながら低次元ベクトル空間にマッピングされる。
近年,スパイキングニューラルネットワークの時間領域にグラフ要素をマッピングするグラフ埋め込み手法が提案されている。
しかし、それは1回だけスパイクするニューロンの集団を通してグラフ要素のエンコーディングに依存している。
ここでは,スパイクパターンの時間領域を完全に活用することで,グラフ要素あたりのニューロンを1つだけ必要としながら,スパイクトレインによる知識グラフの埋め込みを学習できるモデルを提案する。
この符号化方式は、スパイク時間に対する勾配を計算できる限り任意のスパイクニューロンモデルで実装することができる。
以上の結果から,リレーショナル知識をスパイクベースシステムに統合し,イベントベースコンピューティングとリレーショナルデータを統合することにより,パワフルでエネルギー効率の高い人工知能アプリケーションや推論システムを構築する可能性を示す。
関連論文リスト
- State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Neuro-symbolic computing with spiking neural networks [0.6035125735474387]
我々は、スパイクベースのグラフアルゴリズムに関するこれまでの研究を、スパイクニューロンを用いてシンボリックおよびマルチリレーショナル情報をエンコードする方法を実証することによって拡張した。
導入されたフレームワークは、グラフ埋め込みパラダイムと、エラーバックプロパゲーションを用いたスパイクニューラルネットワークのトレーニングの最近の進歩を組み合わせることで実現されている。
論文 参考訳(メタデータ) (2022-08-04T10:49:34Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - Learning through structure: towards deep neuromorphic knowledge graph
embeddings [0.5906031288935515]
本稿では,知識グラフ推論のための深層グラフ学習アーキテクチャをニューロモルフィックアーキテクチャにマッピングする戦略を提案する。
ランダムかつ未学習のグラフニューラルネットワークが局所的なグラフ構造を保存することができるという知見に基づいて、凍結したニューラルネットワークの浅い知識グラフ埋め込みモデルを構成する。
我々は,従来型のハードウェア上では,性能水準を維持しながら,高速化とメモリの大幅な削減を実現していることを示す。
論文 参考訳(メタデータ) (2021-09-21T18:01:04Z) - SpikE: spike-based embeddings for multi-relational graph data [0.0]
スパイクニューラルネットワークは、感覚処理から生じるタスクに主に適用されます。
業界や研究に幅広く適用されている豊富なデータ表現は、いわゆるナレッジグラフです。
本稿では,グラフ中のノードをニューロン集団の単一スパイク時間で表すスパイクベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-27T18:00:12Z) - Neural-Symbolic Relational Reasoning on Graph Models: Effective Link
Inference and Computation from Knowledge Bases [0.5669790037378094]
モデルにそのような経路を含む知識グラフの最小限のネットワークを埋め込むことにより、すべての経路を学習するニューラルネットワークのシンボリックグラフを提案する。
単語の埋め込みに対応する実体と事実の表現を学習することにより、モデルをエンドツーエンドでトレーニングし、それらの表現をデコードし、関係性アプローチでエンティティ間の関係を推論する方法を示す。
論文 参考訳(メタデータ) (2020-05-05T22:46:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。