論文の概要: Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling
- arxiv url: http://arxiv.org/abs/2109.12517v1
- Date: Sun, 26 Sep 2021 07:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-29 13:45:26.776990
- Title: Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling
- Title(参考訳): fMRIモデリングのための動的適応時空間グラフ畳み込み
- Authors: Ahmed El-Gazzar, Rajat Mani Thomas, and Guido van Wingen
- Abstract要約: 本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The characterisation of the brain as a functional network in which the
connections between brain regions are represented by correlation values across
time series has been very popular in the last years. Although this
representation has advanced our understanding of brain function, it represents
a simplified model of brain connectivity that has a complex dynamic
spatio-temporal nature. Oversimplification of the data may hinder the merits of
applying advanced non-linear feature extraction algorithms. To this end, we
propose a dynamic adaptive spatio-temporal graph convolution (DAST-GCN) model
to overcome the shortcomings of pre-defined static correlation-based graph
structures. The proposed approach allows end-to-end inference of dynamic
connections between brain regions via layer-wise graph structure learning
module while mapping brain connectivity to a phenotype in a supervised learning
framework. This leverages the computational power of the model, data and
targets to represent brain connectivity, and could enable the identification of
potential biomarkers for the supervised target in question. We evaluate our
pipeline on the UKBiobank dataset for age and gender classification tasks from
resting-state functional scans and show that it outperforms currently adapted
linear and non-linear methods in neuroimaging. Further, we assess the
generalizability of the inferred graph structure by transferring the
pre-trained graph to an independent dataset for the same task. Our results
demonstrate the task-robustness of the graph against different scanning
parameters and demographics.
- Abstract(参考訳): 脳領域間の接続が時系列間の相関値として表現される機能的ネットワークとしての脳の特徴化は、ここ数年で非常に人気がある。
この表現は脳機能の理解を深めましたが、複雑な動的時空間の性質を持つ脳接続の単純化されたモデルを表しています。
データの単純化は、高度な非線形特徴抽出アルゴリズムを適用するメリットを損なう可能性がある。
本研究では,事前定義された静的相関に基づくグラフ構造の欠点を克服するために,動的適応時空間グラフ畳み込み(dast-gcn)モデルを提案する。
提案手法により、階層グラフ構造学習モジュールを介して脳領域間の動的接続をエンドツーエンドに推論し、脳との接続を教師付き学習フレームワークの表現型にマッピングする。
これはモデル、データ、ターゲットの計算能力を利用して脳の接続を表現し、問題の監視対象に対する潜在的なバイオマーカーの識別を可能にする。
静止状態機能スキャンから年齢・性別分類タスクのUKBiobankデータセット上でのパイプラインの評価を行い,現在適用されている線形・非線形の手法よりも優れていることを示す。
さらに,事前学習したグラフを同一タスクに対して独立したデータセットに転送することで,推定グラフ構造の一般化性を評価する。
本研究は,異なる走査パラメータと人口統計量に対するタスクロバスト性を示す。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Relational representation learning with spike trains [0.0]
本稿では,スパイクパターンの時間領域を完全に活用することで,知識グラフのスパイクトレインによる埋め込みを学習できるモデルを提案する。
以上の結果から,リレーショナル知識をスパイクベースシステムに統合することで,イベントベースコンピューティングとデータをマージして,パワフルでエネルギー効率の高い人工知能アプリケーションや推論システムを構築する可能性を明らかにする。
論文 参考訳(メタデータ) (2022-05-18T18:00:37Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
深部グラフニューラルネットワーク(GNN)よりもかなり浅いモデルを提案する。
本モデルは,各時系列の自己回帰構造を学習し,有向接続グラフを推定する。
統合失調症患者とコントロールを分類した機能的ニューロイメージングデータセットについて報告する。
論文 参考訳(メタデータ) (2021-11-01T21:50:35Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
本稿では,脳コネクトームの動的グラフ表現を時間的注意とともに学習するSTAGINを提案する。
HCP-RestとHCP-Taskデータセットの実験は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-05-27T23:06:50Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
BOLD時系列の短いサブシーケンスに基づいて、時空間グラフ畳み込みネットワーク(ST-GCN)を訓練し、機能接続の非定常特性をモデル化する。
St-GCNはBOLD信号に基づいて性別や年齢を予測する一般的な手法よりもはるかに正確である。
論文 参考訳(メタデータ) (2020-03-24T01:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。