DDXPlus: A new Dataset for Medical Automatic Diagnosis
- URL: http://arxiv.org/abs/2205.09148v1
- Date: Wed, 18 May 2022 18:03:39 GMT
- Title: DDXPlus: A new Dataset for Medical Automatic Diagnosis
- Authors: Arsene Fansi Tchango, Zhi Wen, Rishab Goel, Joumana Ghosn
- Abstract summary: We present a large-scale synthetic dataset that includes a differential diagnosis, along with the ground truth pathology, for each patient.
As a proof-of-concept, we extend several existing AD and ASD systems to incorporate differential diagnosis.
We provide empirical evidence that using differentials in training signals is essential for such systems to learn to predict differentials.
- Score: 2.7126836481535213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been rapidly growing interests in Automatic Diagnosis (AD) and
Automatic Symptom Detection (ASD) systems in the machine learning research
literature, aiming to assist doctors in telemedicine services. These systems
are designed to interact with patients, collect evidence relevant to their
concerns, and make predictions about the underlying diseases. Doctors would
review the interaction, including the evidence and the predictions, before
making their final decisions. Despite the recent progress, an important piece
of doctors' interactions with patients is missing in the design of AD and ASD
systems, namely the differential diagnosis. Its absence is largely due to the
lack of datasets that include such information for models to train on. In this
work, we present a large-scale synthetic dataset that includes a differential
diagnosis, along with the ground truth pathology, for each patient. In
addition, this dataset includes more pathologies, as well as types of symtoms
and antecedents. As a proof-of-concept, we extend several existing AD and ASD
systems to incorporate differential diagnosis, and provide empirical evidence
that using differentials in training signals is essential for such systems to
learn to predict differentials. Dataset available at
https://github.com/bruzwen/ddxplus
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Automatic Differential Diagnosis using Transformer-Based Multi-Label Sequence Classification [0.0]
We propose a transformer-based approach for providing differential diagnoses based on a patient's age, sex, medical history, and symptoms.
We use the DDXPlus dataset, which provides differential diagnosis information for patients based on 49 disease types.
arXiv Detail & Related papers (2024-08-28T14:40:15Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations [26.337392652262103]
A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
arXiv Detail & Related papers (2022-05-08T01:52:42Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
We propose a more interpretable decision process to implement the dialogue manager of DSMD.
We devise a model with highly transparent components to conduct the inference.
Experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy.
arXiv Detail & Related papers (2022-04-29T09:02:23Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - A Predictive Visual Analytics System for Studying Neurodegenerative
Disease based on DTI Fiber Tracts [20.879437896802408]
We introduce an intelligent visual analytics system for studying patient groups based on their labeled DTI fiber tract data and corresponding statistics.
The system's AI-augmented interface guides the user through an organized and holistic analysis space.
We conduct several case studies using real data from the research database of Parkinson's Progression Markers Initiative.
arXiv Detail & Related papers (2020-10-13T06:34:45Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.