An Invariant Matching Property for Distribution Generalization under
Intervened Response
- URL: http://arxiv.org/abs/2205.09162v1
- Date: Wed, 18 May 2022 18:25:21 GMT
- Title: An Invariant Matching Property for Distribution Generalization under
Intervened Response
- Authors: Kang Du and Yu Xiang
- Abstract summary: We show a novel form of invariance by incorporating the estimates of certain features as additional predictors.
We provide an explicit characterization of the linear matching and present our simulation results under various intervention settings.
- Score: 19.786769414376323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of distribution generalization concerns making reliable prediction
of a response in unseen environments. The structural causal models are shown to
be useful to model distribution changes through intervention. Motivated by the
fundamental invariance principle, it is often assumed that the conditional
distribution of the response given its predictors remains the same across
environments. However, this assumption might be violated in practical settings
when the response is intervened. In this work, we investigate a class of model
with an intervened response. We identify a novel form of invariance by
incorporating the estimates of certain features as additional predictors.
Effectively, we show this invariance is equivalent to having a deterministic
linear matching that makes the generalization possible. We provide an explicit
characterization of the linear matching and present our simulation results
under various intervention settings.
Related papers
- Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Learning Invariant Representations under General Interventions on the
Response [2.725698729450241]
We focus on linear structural causal models (SCMs) and introduce invariant matching property (IMP)
We analyze the generalization errors of our method under both the discrete and continuous environment settings.
arXiv Detail & Related papers (2022-08-22T03:09:17Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
We propose a measure of a classifier's output invariance in a local transformation neighborhood.
Our measure is simple to calculate, does not depend on the test point's true label, and can be applied even in out-of-domain (OOD) settings.
In experiments on benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our measure and actual OOD generalization.
arXiv Detail & Related papers (2022-07-05T14:55:16Z) - Amortized backward variational inference in nonlinear state-space models [0.0]
We consider the problem of state estimation in general state-space models using variational inference.
We establish for the first time that, under mixing assumptions, the variational approximation of expectations of additive state functionals induces an error which grows at most linearly in the number of observations.
arXiv Detail & Related papers (2022-06-01T08:35:54Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
Covariate shift is a significant obstacle in the development of robust machine learning models.
We present a theoretical understanding in context of modern machine learning.
arXiv Detail & Related papers (2021-11-16T05:23:28Z) - Goal-oriented adaptive sampling under random field modelling of response
probability distributions [0.6445605125467573]
We consider cases where the spatial variation of response distributions does not only concern their mean and/or variance but also other features including for instance shape or uni-modality versus multi-modality.
Our contributions build upon a non-parametric Bayesian approach to modelling the thereby induced fields of probability distributions.
arXiv Detail & Related papers (2021-02-15T15:55:23Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness.
This differentiable functional is used as a penalty driving the model parameters towards equalized odds.
We develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature.
arXiv Detail & Related papers (2020-06-08T00:18:34Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.