GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints
- URL: http://arxiv.org/abs/2205.09235v4
- Date: Tue, 21 May 2024 17:19:08 GMT
- Title: GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints
- Authors: Mohammadsajad Abavisani, David Danks, Sergey Plis,
- Abstract summary: Graphical structures estimated by causal learning algorithms from time series data can provide misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data.
Existing algorithms provide limited resources to respond to this challenge, and so researchers must either use models that they know are likely misleading, or else forego causal learning entirely.
Existing methods face up-to-four distinct shortfalls, as they might 1) require that the difference between causal and measurement is known; 2) only handle very small number of random variables when the timescale difference is unknown; 3) only apply to pairs of variables; or 4) be unable to
- Score: 3.2374399328078285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphical structures estimated by causal learning algorithms from time series data can provide misleading causal information if the causal timescale of the generating process fails to match the measurement timescale of the data. Existing algorithms provide limited resources to respond to this challenge, and so researchers must either use models that they know are likely misleading, or else forego causal learning entirely. Existing methods face up-to-four distinct shortfalls, as they might 1) require that the difference between causal and measurement timescales is known; 2) only handle very small number of random variables when the timescale difference is unknown; 3) only apply to pairs of variables; or 4) be unable to find a solution given statistical noise in the data. This research addresses these challenges. Our approach combines constraint programming with both theoretical insights into the problem structure and prior information about admissible causal interactions to achieve multiple orders of magnitude in speed-up. The resulting system maintains theoretical guarantees while scaling to significantly larger sets of random variables (>100) without knowledge of timescale differences. This method is also robust to edge misidentification and can use parametric connection strengths, while optionally finding the optimal solution among many possible ones.
Related papers
- Learning causal graphs using variable grouping according to ancestral relationship [7.126300090990439]
When the sample size is small relative to the number of variables, the accuracy of estimating causal graphs using existing methods decreases.
Some methods are not feasible when the sample size is smaller than the number of variables.
To circumvent these problems, some researchers proposed causal structure learning algorithms using divide-and-conquer approaches.
arXiv Detail & Related papers (2024-03-21T04:42:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Bootstrap aggregation and confidence measures to improve time series
causal discovery [0.0]
We introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure.
We combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+.
arXiv Detail & Related papers (2023-06-15T08:37:16Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
Causal discovery from observational data is an important tool in many branches of science.
In the large sample limit, sound and complete causal discovery algorithms have been previously introduced.
However, only finite training data is available, which limits the power of statistical tests used by these algorithms.
arXiv Detail & Related papers (2021-07-11T09:24:49Z) - DPER: Efficient Parameter Estimation for Randomly Missing Data [0.24466725954625884]
We propose novel algorithms to find the maximum likelihood estimates (MLEs) for a one-class/multiple-class randomly missing data set.
Our algorithms do not require multiple iterations through the data, thus promising to be less time-consuming than other methods.
arXiv Detail & Related papers (2021-06-06T16:37:48Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Normalized multivariate time series causality analysis and causal graph
reconstruction [0.0]
Causality analysis is an important problem lying at the heart of science, and is of particular importance in data science and machine learning.
This study introduces to the community this line of work, with a long-due generalization of the information flow-based bivariate time series causal inference.
The resulting formula is transparent, and can be implemented as a computationally very efficient algorithm for application.
arXiv Detail & Related papers (2021-04-23T00:46:35Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
We study exploration in multi-armed bandits when we have access to a divisible resource that can be allocated in varying amounts to arm pulls.
We focus in particular on the allocation of distributed computing resources, where we may obtain results faster by allocating more resources per pull.
arXiv Detail & Related papers (2020-10-31T18:19:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.