Threshold Designer Adaptation: Improved Adaptation for Designers in
Co-creative Systems
- URL: http://arxiv.org/abs/2205.09269v1
- Date: Thu, 19 May 2022 01:13:22 GMT
- Title: Threshold Designer Adaptation: Improved Adaptation for Designers in
Co-creative Systems
- Authors: Emily Halina and Matthew Guzdial
- Abstract summary: We present threshold designer adaptation: a novel method for adapting a creative ML model to an individual designer.
We find that designers prefer our proposed method and produce higher quality content in comparison to an existing baseline.
- Score: 0.9645196221785693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To best assist human designers with different styles, Machine Learning (ML)
systems need to be able to adapt to them. However, there has been relatively
little prior work on how and when to best adapt an ML system to a co-designer.
In this paper we present threshold designer adaptation: a novel method for
adapting a creative ML model to an individual designer. We evaluate our
approach with a human subject study using a co-creative rhythm game design
tool. We find that designers prefer our proposed method and produce higher
quality content in comparison to an existing baseline.
Related papers
- MetaDesigner: Advancing Artistic Typography Through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesigner introduces a transformative framework for artistic typography, powered by Large Language Models (LLMs)
Its foundation is a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively orchestrate the creation of customizable WordArt.
arXiv Detail & Related papers (2024-06-28T11:58:26Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We develop an automated text-to-poster system that generates editable posters based on users' design intentions.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources.
We introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts.
Our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello.
arXiv Detail & Related papers (2024-04-23T17:58:33Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Design is a personalized interior designer that allows users to generate and visualize their design goals through natural language communication.
I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another.
The final design is then constructed in 3D by retrieving and integrating assets from an existing object database.
arXiv Detail & Related papers (2024-04-03T16:17:53Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents [11.449817465618658]
Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent.
This can be challenging when the design space is large.
We propose a multi-fidelity-based exploration strategy to improve the sample efficiency of co-design.
arXiv Detail & Related papers (2023-09-08T02:54:31Z) - Preference-Learning Emitters for Mixed-Initiative Quality-Diversity
Algorithms [0.6445605125467573]
In mixed-initiative co-creation tasks, it is important to provide multiple relevant suggestions to the designer.
We propose a general framework for preference-learning emitters (PLEs) and apply it to a procedural content generation task in the video game Space Engineers.
arXiv Detail & Related papers (2022-10-25T08:45:00Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Evaluating Mixed-Initiative Procedural Level Design Tools using a
Triple-Blind Mixed-Method User Study [0.0]
A tool which generates levels using interactive evolutionary optimisation was designed for this study.
The tool identifies level design patterns in an initial hand-designed map and uses that information to drive an interactive optimisation algorithm.
A rigorous user study was designed which compared the experiences of designers using the mixed-initiative tool to designers who were given a tool which provided completely random level suggestions.
arXiv Detail & Related papers (2020-05-15T11:40:53Z) - Designer Modeling through Design Style Clustering [4.4447051343759965]
We propose modeling designer style in mixed-initiative game content creation tools as archetypical design traces.
This method is implemented in the Evolutionary Dungeon Designer, a research platform for mixed-initiative systems to create adventure and dungeon crawler games.
arXiv Detail & Related papers (2020-04-03T17:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.