ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents
- URL: http://arxiv.org/abs/2309.04085v2
- Date: Wed, 16 Oct 2024 03:03:25 GMT
- Title: ECoDe: A Sample-Efficient Method for Co-Design of Robotic Agents
- Authors: Kishan R. Nagiredla, Buddhika L. Semage, Arun Kumar A. V, Thommen G. Karimpanal, Santu Rana,
- Abstract summary: Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent.
This can be challenging when the design space is large.
We propose a multi-fidelity-based exploration strategy to improve the sample efficiency of co-design.
- Score: 11.449817465618658
- License:
- Abstract: Co-designing autonomous robotic agents involves simultaneously optimizing the controller and physical design of the agent. Its inherent bi-level optimization formulation necessitates an outer loop design optimization driven by an inner loop control optimization. This can be challenging when the design space is large and each design evaluation involves a data-intensive reinforcement learning process for control optimization. To improve the sample efficiency of co-design, we propose a multi-fidelity-based exploration strategy in which we tie the controllers learned across the design spaces through a universal policy learner for warm-starting subsequent controller learning problems. Experiments performed on a wide range of agent design problems demonstrate the superiority of our method compared to baselines. Additionally, analysis of the optimized designs shows interesting design alterations, including design simplifications and non-intuitive alterations.
Related papers
- Co-Optimization of Robot Design and Control: Enhancing Performance and Understanding Design Complexity [0.8999666725996974]
Co-optimization of design and control of robots produces a design and control that are both adapted to the task.
We show that retraining the controller of a robot with additional resources after the co-optimization process terminates significantly improves the robot's performance.
arXiv Detail & Related papers (2024-09-13T08:18:01Z) - ADO-LLM: Analog Design Bayesian Optimization with In-Context Learning of Large Language Models [5.642568057913696]
This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization.
ADO-LLM leverages the LLM's ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high value design areas.
We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness.
arXiv Detail & Related papers (2024-06-26T21:42:50Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Fusion of ML with numerical simulation for optimized propeller design [0.6767885381740952]
We propose an alternative way to use ML model to surrogate the design process.
By using this trained surrogate model with the traditional optimization method, we can get the best of both worlds.
Empirical evaluations of propeller design problems show that a better efficient design can be found in fewer evaluations using SAO.
arXiv Detail & Related papers (2023-02-28T16:42:07Z) - Meta Reinforcement Learning for Optimal Design of Legged Robots [9.054187238463212]
We present a design optimization framework using model-free meta reinforcement learning.
We show that our approach allows higher performance while not being constrained by predefined motions or gait patterns.
arXiv Detail & Related papers (2022-10-06T08:37:52Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.