論文の概要: Simplifying Node Classification on Heterophilous Graphs with Compatible
Label Propagation
- arxiv url: http://arxiv.org/abs/2205.09389v1
- Date: Thu, 19 May 2022 08:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 14:36:32.490961
- Title: Simplifying Node Classification on Heterophilous Graphs with Compatible
Label Propagation
- Title(参考訳): 相同ラベル伝搬を持つ異好グラフのノード分類の簡易化
- Authors: Zhiqiang Zhong and Sergey Ivanov and Jun Pang
- Abstract要約: 本稿では,グラフに対する半教師付きノード分類において,グラフアルゴリズムのラベル伝搬と浅いニューラルネットワークを組み合わせることで,GNNに匹敵する性能が得られることを示す。
本稿では,ノードが反対クラスのノードに接続されることの多い低ホモフィリーグラフ上では,このアプローチが不十分であることを示す。
アルゴリズムはまずクラス互換行列を学習し、次にクラス適合性によって重み付けされたLPアルゴリズムを用いてラベル予測を集約する。
- 参考スコア(独自算出の注目度): 6.071760028190454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been predominant for graph learning tasks;
however, recent studies showed that a well-known graph algorithm, Label
Propagation (LP), combined with a shallow neural network can achieve comparable
performance to GNNs in semi-supervised node classification on graphs with high
homophily. In this paper, we show that this approach falls short on graphs with
low homophily, where nodes often connect to the nodes of the opposite classes.
To overcome this, we carefully design a combination of a base predictor with LP
algorithm that enjoys a closed-form solution as well as convergence guarantees.
Our algorithm first learns the class compatibility matrix and then aggregates
label predictions using LP algorithm weighted by class compatibilities. On a
wide variety of benchmarks, we show that our approach achieves the leading
performance on graphs with various levels of homophily. Meanwhile, it has
orders of magnitude fewer parameters and requires less execution time.
Empirical evaluations demonstrate that simple adaptations of LP can be
competitive in semi-supervised node classification in both homophily and
heterophily regimes.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフ学習のタスクにおいて主流となっているが,近年の研究では,グラフ上の半教師付きノード分類において,グラフアルゴリズムであるラベル伝搬(LP)と浅いニューラルネットワークを組み合わせることで,GNNと同等のパフォーマンスが得られることが示されている。
本稿では,ノードが反対クラスのノードに接続されることの多い低ホモフィリーグラフ上では,このアプローチが不十分であることを示す。
これを解決するために,我々は,閉形式解と収束保証を享受するLPアルゴリズムとベース予測器の組み合わせを慎重に設計する。
アルゴリズムはまずクラス互換行列を学習し、次にクラス適合性によって重み付けされたLPアルゴリズムを用いてラベル予測を集約する。
様々なベンチマークにおいて,本手法は様々なレベルのホモフィリーを持つグラフ上での先行的な性能を実現する。
一方、パラメータは桁違いに少なく、実行時間も少なくなる。
経験的評価により、lp の単純適応はホモフィアとヘテロフィアの双方で半教師ありノード分類において競合できることを示した。
関連論文リスト
- Heterophily-Based Graph Neural Network for Imbalanced Classification [19.51668009720269]
グラフの不均衡な分類をグラフヘテロフィリを考慮した一意なアプローチを導入する。
我々は,不均衡な分類戦略をヘテロフィリア認識GNNと統合したFast Im-GBKを提案する。
実世界のグラフに関する我々の実験は、ノード分類タスクの分類性能と効率において、我々のモデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-10-12T21:19:47Z) - Pseudo Contrastive Learning for Graph-based Semi-supervised Learning [67.37572762925836]
Pseudo Labelingは、グラフニューラルネットワーク(GNN)の性能向上に使用されるテクニックである。
我々はPseudo Contrastive Learning(PCL)と呼ばれるGNNのための一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-19T10:34:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
論文 参考訳(メタデータ) (2021-03-26T00:35:36Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。