論文の概要: Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs
- arxiv url: http://arxiv.org/abs/2103.14187v1
- Date: Fri, 26 Mar 2021 00:35:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 23:56:05.498638
- Title: Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs
- Title(参考訳): 低パスフィルタを超えて:グラフ上の適応的特徴伝播
- Authors: Sean Li, Dongwoo Kim, Qing Wang
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
ほとんどのGNNは、局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
基本となるホモフィリーによって制限されることなく、任意のグラフを扱うことができる柔軟なGNNモデルを提案する。
- 参考スコア(独自算出の注目度): 6.018995094882323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have been extensively studied for prediction
tasks on graphs. Aspointed out by recent studies, most GNNs assume local
homophily, i.e., strong similarities in localneighborhoods. This assumption
however limits the generalizability power of GNNs. To address thislimitation,
we propose a flexible GNN model, which is capable of handling any graphs
without beingrestricted by their underlying homophily. At its core, this model
adopts a node attention mechanismbased on multiple learnable spectral filters;
therefore, the aggregation scheme is learned adaptivelyfor each graph in the
spectral domain. We evaluated the proposed model on node classification
tasksover seven benchmark datasets. The proposed model is shown to generalize
well to both homophilicand heterophilic graphs. Further, it outperforms all
state-of-the-art baselines on heterophilic graphsand performs comparably with
them on homophilic graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ上の予測タスクのために広く研究されている。
最近の研究では、ほとんどのGNNは局所的ホモフィリー、すなわち地域住民の強い類似性を仮定している。
しかし、この仮定はGNNの一般化可能性を制限する。
そこで本研究では,その基礎となるホモフィリーによって制限されることなく,任意のグラフを扱える柔軟なGNNモデルを提案する。
このモデルの中核は、複数の学習可能なスペクトルフィルタに基づくノードアテンション機構を採用しているため、スペクトル領域の各グラフに対してアグレゲーションスキームを適応的に学習する。
提案したノード分類タスクを7つのベンチマークデータセットで評価した。
提案したモデルは、ホモフィルグラフとヘテロフィルグラフの両方によく一般化する。
さらに、heterophilic graphの最先端のベースラインを全て上回っており、homophilic graphsのベースラインと互換性がある。
関連論文リスト
- The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
ヘテロフィリー・スノーフレーク仮説を導入し、ヘテロ親和性グラフの研究をガイドし、促進するための効果的なソリューションを提供する。
観察の結果,我々のフレームワークは多種多様なタスクのための多目的演算子として機能することがわかった。
さまざまなGNNフレームワークに統合することができ、パフォーマンスを詳細に向上し、最適なネットワーク深さを選択するための説明可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-06-18T12:16:00Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - GPatcher: A Simple and Adaptive MLP Model for Alleviating Graph
Heterophily [15.93465948768545]
グラフニューラルネットワーク(GNN)フィルタにおけるグラフヘテロフィリーの影響を解明する。
我々は,パッチ・ミクサーアーキテクチャを利用したGPatcherというシンプルで強力なGNNを提案する。
本モデルでは, ノード分類において, 人気ホモフィリーGNNや最先端ヘテロフィリーGNNと比較して, 優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-25T20:57:35Z) - Break the Wall Between Homophily and Heterophily for Graph
Representation Learning [25.445073413243925]
ホモフィリーとヘテロフィリーは、2つの連結ノードが同様の性質を持つかどうかを記述するグラフの固有の性質である。
本研究は, グラフ表現学習に不可欠なエゴノード特徴, 集約ノード特徴, グラフ構造特徴を含む3つのグラフ特徴を同定する。
OGNNと呼ばれる新しいGNNモデルを提案し、3つのグラフの特徴を全て抽出し、それらを適応的に融合させ、ホモフィリーのスペクトル全体にわたって一般化する。
論文 参考訳(メタデータ) (2022-10-08T19:37:03Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
グラフニューラルネットワーク(GNN)は、しばしばグラフ分類において強いホモフィリを仮定し、ヘテロフィリを考えることは滅多にない。
We developed a novel GNN architecture called IHGNN (short for Incorporated Heterophily into Graph Neural Networks)
我々は、様々なグラフデータセット上でIHGNNを実証的に検証し、グラフ分類のための最先端のGNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T06:48:35Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。