論文の概要: Transformers as Neural Augmentors: Class Conditional Sentence Generation
via Variational Bayes
- arxiv url: http://arxiv.org/abs/2205.09391v1
- Date: Thu, 19 May 2022 08:42:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-21 03:55:53.307310
- Title: Transformers as Neural Augmentors: Class Conditional Sentence Generation
via Variational Bayes
- Title(参考訳): ニューラルオーグメンタとしてのトランスフォーマー:変分ベイによるクラス条件文生成
- Authors: M. \c{S}afak Bilici, Mehmet Fatih Amasyali
- Abstract要約: 本稿では,変分オートエンコーダとエンコーダデコーダトランスモデルを組み合わせたニューラルネットワーク拡張手法を提案する。
入力文を符号化・復号化しながら,そのクラス条件で入力言語の構文的・意味的表現をキャプチャする。
本モデルでは,計算能力の少ない他のデータ拡張手法と比較して,現行モデルの性能を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation methods for Natural Language Processing tasks are explored
in recent years, however they are limited and it is hard to capture the
diversity on sentence level. Besides, it is not always possible to perform data
augmentation on supervised tasks. To address those problems, we propose a
neural data augmentation method, which is a combination of Conditional
Variational Autoencoder and encoder-decoder Transformer model. While encoding
and decoding the input sentence, our model captures the syntactic and semantic
representation of the input language with its class condition. Following the
developments in the past years on pre-trained language models, we train and
evaluate our models on several benchmarks to strengthen the downstream tasks.
We compare our method with 3 different augmentation techniques. The presented
results show that, our model increases the performance of current models
compared to other data augmentation techniques with a small amount of
computation power.
- Abstract(参考訳): 近年,自然言語処理タスクのためのデータ拡張手法が検討されているが,制限されているため,文レベルでの多様性の把握は困難である。
さらに、教師付きタスクでデータ拡張を行うこともできるとは限らない。
これらの問題に対処するために,条件付き変分オートエンコーダとエンコーダ・デコーダ・トランスフォーマモデルを組み合わせたニューラルデータ拡張手法を提案する。
入力文を符号化・復号化しながら,そのクラス条件で入力言語の構文的・意味的表現をキャプチャする。
過去数年間の事前訓練言語モデルの開発に続いて、下流タスクを強化するために、いくつかのベンチマークでモデルをトレーニングし、評価した。
本手法を3種類の拡張手法と比較した。
その結果,本モデルでは計算能力の少ない他のデータ拡張手法と比較して,現在のモデルの性能が向上することが示された。
関連論文リスト
- GASE: Generatively Augmented Sentence Encoding [0.0]
本稿では,データ拡張のための生成テキストモデルを推論時に適用することにより,文の埋め込みを強化する手法を提案する。
Generatively Augmented Sentenceは、パラフレーズ、要約、あるいはキーワードの抽出によって生成される入力テキストの多様な合成変種を使用する。
生成的拡張により,ベースライン性能の低い埋め込みモデルの性能が向上することが判明した。
論文 参考訳(メタデータ) (2024-11-07T17:53:47Z) - Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
本研究は,分類タスクのベースモデルを調整するための3段階手法を提案する。
我々は,DAE(Denoising Autoencoder)を用いたさらなるトレーニングを行うことで,モデルの信号をデータ配信に適用する。
さらに、教師付きコントラスト学習のための新しいデータ拡張手法を導入し、不均衡なデータセットを修正する。
論文 参考訳(メタデータ) (2024-05-23T11:08:35Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
我々は,フローマッチングとマスク条件を併用した60k時間の無転写音声に対して,SpeechFlowという生成モデルを事前学習した。
実験結果から,事前学習した生成モデルをタスク固有のデータで微調整し,音声強調,分離,合成に関する既存の専門家モデルに適合または超えることを示す。
論文 参考訳(メタデータ) (2023-10-25T03:40:50Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
本稿では,テキストシーケンスの離散潜在表現から構築したn-gramでモデルを拡張することにより,統計言語モデリングの文献に触発されたトランスフォーマーアーキテクチャの簡易かつ効果的な変更を提案する。
我々は、C4データセットの言語モデリングにおけるN-GrammerモデルとSuperGLUEデータセットのテキスト分類を評価し、TransformerやPrimerといった強力なベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2022-07-13T17:18:02Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
本稿では,事前学習したトランスモデルに基づく非自己回帰生成モデルを提案する。
我々はMIxソースと擬似ターゲットという,シンプルで効果的な反復訓練手法を提案する。
質問生成,要約,パラフレーズ生成を含む3つの世代ベンチマーク実験により,提案手法が新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2021-10-21T13:04:21Z) - Discriminative and Generative Transformer-based Models For Situation
Entity Classification [8.029049649310211]
我々は、状況エンティティ(SE)分類タスクを、利用可能なトレーニングデータの量に応じて再検討する。
変換器を用いた変分オートエンコーダを用いて文を低次元の潜在空間に符号化する。
論文 参考訳(メタデータ) (2021-09-15T17:07:07Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
我々は、事前学習された言語モデルにおける入力と出力の埋め込みの重みを共有する標準的な方法を再評価する。
分離された埋め込みによりモデリングの柔軟性が向上し、パラメータ割り当ての効率が大幅に向上することを示す。
我々は、微調整段階においてパラメータの数を増やすことなく、XTREMEベンチマークで高い性能を達成するモデルを訓練することができる。
論文 参考訳(メタデータ) (2020-10-24T07:43:00Z) - TERA: Self-Supervised Learning of Transformer Encoder Representation for
Speech [63.03318307254081]
TERA は Transformer Representations from Alteration の略である。
我々は3つの軸に沿った変形を用いて、大量のラベルなし音声でトランスフォーマーを事前訓練する。
TERAは、音声表現の抽出や下流モデルによる微調整に使用することができる。
論文 参考訳(メタデータ) (2020-07-12T16:19:00Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
変分変換器(VT)は、変分自己注意フィードフォワードシーケンスモデルである。
VTはトランスフォーマーの並列化性と大域的受容場計算とCVAEの変動特性を組み合わせる。
本稿では,1)大域潜伏変数を用いた談話レベルの多様性のモデル化,2)細粒潜伏変数の列によるトランスフォーマーデコーダの拡張,の2種類のVTについて検討する。
論文 参考訳(メタデータ) (2020-03-28T07:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。