Transformers as Neural Augmentors: Class Conditional Sentence Generation
via Variational Bayes
- URL: http://arxiv.org/abs/2205.09391v1
- Date: Thu, 19 May 2022 08:42:33 GMT
- Title: Transformers as Neural Augmentors: Class Conditional Sentence Generation
via Variational Bayes
- Authors: M. \c{S}afak Bilici, Mehmet Fatih Amasyali
- Abstract summary: We propose a neural data augmentation method, which is a combination of Variational Autoencoder and encoder-decoder Transformer model.
While encoding and decoding the input sentence, our model captures the syntactic and semantic representation of the input language with its class condition.
Our model increases the performance of current models compared to other data augmentation techniques with a small amount of computation power.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation methods for Natural Language Processing tasks are explored
in recent years, however they are limited and it is hard to capture the
diversity on sentence level. Besides, it is not always possible to perform data
augmentation on supervised tasks. To address those problems, we propose a
neural data augmentation method, which is a combination of Conditional
Variational Autoencoder and encoder-decoder Transformer model. While encoding
and decoding the input sentence, our model captures the syntactic and semantic
representation of the input language with its class condition. Following the
developments in the past years on pre-trained language models, we train and
evaluate our models on several benchmarks to strengthen the downstream tasks.
We compare our method with 3 different augmentation techniques. The presented
results show that, our model increases the performance of current models
compared to other data augmentation techniques with a small amount of
computation power.
Related papers
- GASE: Generatively Augmented Sentence Encoding [0.0]
We propose an approach to enhance sentence embeddings by applying generative text models for data augmentation at inference time.
Generatively Augmented Sentence uses diverse synthetic variants of input texts generated by paraphrasing, summarising or extracting keywords.
We find that generative augmentation leads to larger performance improvements for embedding models with lower baseline performance.
arXiv Detail & Related papers (2024-11-07T17:53:47Z) - Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
This work proposes a 3 Phase technique to adjust a base model for a classification task.
We adapt the model's signal to the data distribution by performing further training with a Denoising Autoencoder (DAE)
In addition, we introduce a new data augmentation approach for Supervised Contrastive Learning to correct the unbalanced datasets.
arXiv Detail & Related papers (2024-05-23T11:08:35Z) - Generative Pre-training for Speech with Flow Matching [81.59952572752248]
We pre-trained a generative model, named SpeechFlow, on 60k hours of untranscribed speech with Flow Matching and masked conditions.
Experiment results show the pre-trained generative model can be fine-tuned with task-specific data to match or surpass existing expert models on speech enhancement, separation, and synthesis.
arXiv Detail & Related papers (2023-10-25T03:40:50Z) - N-Grammer: Augmenting Transformers with latent n-grams [35.39961549040385]
We propose a simple yet effective modification to the Transformer architecture inspired by the literature in statistical language modeling, by augmenting the model with n-grams that are constructed from a discrete latent representation of the text sequence.
We evaluate our model, the N-Grammer on language modeling on the C4 data-set as well as text classification on the SuperGLUE data-set, and find that it outperforms several strong baselines such as the Transformer and the Primer.
arXiv Detail & Related papers (2022-07-13T17:18:02Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
We present a non-autoregressive generation model based on pre-trained transformer models.
We propose a simple and effective iterative training method called MIx Source and pseudo Target.
Our experiments on three generation benchmarks including question generation, summarization and paraphrase generation, show that the proposed framework achieves the new state-of-the-art results.
arXiv Detail & Related papers (2021-10-21T13:04:21Z) - Discriminative and Generative Transformer-based Models For Situation
Entity Classification [8.029049649310211]
We re-examine the situation entity (SE) classification task with varying amounts of available training data.
We exploit a Transformer-based variational autoencoder to encode sentences into a lower dimensional latent space.
arXiv Detail & Related papers (2021-09-15T17:07:07Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
We re-evaluate the standard practice of sharing weights between input and output embeddings in pre-trained language models.
We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation.
We are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.
arXiv Detail & Related papers (2020-10-24T07:43:00Z) - TERA: Self-Supervised Learning of Transformer Encoder Representation for
Speech [63.03318307254081]
TERA stands for Transformer Representations from Alteration.
We use alteration along three axes to pre-train Transformers on a large amount of unlabeled speech.
TERA can be used for speech representations extraction or fine-tuning with downstream models.
arXiv Detail & Related papers (2020-07-12T16:19:00Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
Variational Transformer (VT) is a variational self-attentive feed-forward sequence model.
VT combines the parallelizability and global receptive field computation of the Transformer with the variational nature of the CVAE.
We explore two types of VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of finegrained latent variables.
arXiv Detail & Related papers (2020-03-28T07:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.