論文の概要: AIGenC: AI generalisation via creativity
- arxiv url: http://arxiv.org/abs/2205.09738v2
- Date: Mon, 23 May 2022 13:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 12:00:25.467284
- Title: AIGenC: AI generalisation via creativity
- Title(参考訳): AIGenC:創造性によるAIの一般化
- Authors: Corina Catarau-Cotutiu, Esther Mondragon, Eduardo Alonso
- Abstract要約: 本稿では,深層強化学習エージェントにおける創造的問題解決の計算モデルを提案する。
AIGenCモデルは、人工エージェントが変換可能な表現を学習、使用、生成できるようにすることを目的としている。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a computational model of creative problem solving in
deep reinforcement learning agents, inspired by cognitive theories of
creativity. The AIGenC model aims at enabling artificial agents to learn, use
and generate transferable representations. AIGenC is embedded in a deep
learning architecture that includes three main components: concept processing,
reflective reasoning, and blending of concepts. The first component extracts
objects and affordances from sensory input and encodes them in a concept space,
represented as a hierarchical graph structure. Concept representations are
stored in a dual memory system. Goal-directed and temporal information acquired
by the agent during deep reinforcement learning enriches the representations
creating a higher-level of abstraction in the concept space. In parallel, a
process akin to reflective reasoning detects and recovers from memory concepts
relevant to the task according to a matching process that calculates a
similarity value between the current state and memory graph structures. Once an
interaction is finalised, rewards and temporal information are added to the
graph structure, creating a higher abstraction level. If reflective reasoning
fails to offer a suitable solution, a blending process comes into place to
create new concepts by combining past information. We discuss the model's
capability to yield better out-of-distribution generalisation in artificial
agents, thus advancing toward artificial general intelligence. To the best of
our knowledge, this is the first computational model, beyond mere formal
theories, that posits a solution to creative problem solving within a deep
learning architecture.
- Abstract(参考訳): 本稿では,創造性の認知理論に触発された深層強化学習エージェントにおける創造的問題解決の計算モデルを提案する。
AIGenCモデルは、人工エージェントが変換可能な表現を学習、使用、生成できるようにすることを目的としている。
AIGenCは、概念処理、反射的推論、概念のブレンドという3つの主要なコンポーネントを含むディープラーニングアーキテクチャに組み込まれている。
第1のコンポーネントは、知覚入力からオブジェクトとアフォーアンスを抽出し、それらを階層グラフ構造として表される概念空間にエンコードする。
概念表現は二重メモリシステムに格納される。
エージェントが深層強化学習中に取得したゴール指向および時間情報により、概念空間におけるより高度な抽象化を生み出す表現が強化される。
並行して、リフレクション推論に類似したプロセスは、現在の状態とメモリグラフ構造との類似度値を計算するマッチングプロセスに従って、タスクに関連するメモリ概念を検出して回復する。
インタラクションが終了すると、報酬と時間情報がグラフ構造に追加され、より高い抽象化レベルが生成される。
反射的推論が適切なソリューションを提供できない場合、過去の情報を組み合わせることで新しい概念を創出するブレンディングプロセスが発生する。
本稿では, 人工エージェントのアウト・オブ・ディストリビューション・ジェネレーションを向上するモデルの能力について論じる。
私たちの知る限りでは、これは単なる形式理論を超えた初めての計算モデルであり、深層学習アーキテクチャにおける創造的な問題解決の解決策となる。
関連論文リスト
- Augmented Commonsense Knowledge for Remote Object Grounding [67.30864498454805]
エージェントナビゲーションを改善するための時間的知識グラフとして,コモンセンス情報を活用するための拡張コモンセンス知識モデル(ACK)を提案する。
ACKは知識グラフ対応のクロスモーダルとコンセプトアグリゲーションモジュールで構成され、視覚的表現と視覚的テキストデータアライメントを強化する。
我々は、より正確な局所的な行動予測につながるコモンセンスに基づく意思決定プロセスのための新しいパイプラインを追加します。
論文 参考訳(メタデータ) (2024-06-03T12:12:33Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
本研究では,コモンセンス推論における概念化の役割について検討し,人間の概念化を再現する枠組みを定式化する。
ATOMIC は大規模な人為的注釈付き CKG であり,この枠組みを分類プロベースで支援している。
論文 参考訳(メタデータ) (2022-06-03T12:24:49Z) - A Cognitive Architecture for Machine Consciousness and Artificial Superintelligence: Thought Is Structured by the Iterative Updating of Working Memory [0.0]
本稿では、コンピュータ内での人間的な思考プロセスのシミュレートのための分析フレームワークを提供する。
注意と記憶がどのように構造化され、更新され、思考ストリームへの連想的な追加を探すために利用されるかを記述する。
論文 参考訳(メタデータ) (2022-03-29T22:28:30Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。