論文の概要: Anomaly Detection for Multivariate Time Series on Large-scale Fluid
Handling Plant Using Two-stage Autoencoder
- arxiv url: http://arxiv.org/abs/2205.09924v1
- Date: Fri, 20 May 2022 01:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 15:08:25.221109
- Title: Anomaly Detection for Multivariate Time Series on Large-scale Fluid
Handling Plant Using Two-stage Autoencoder
- Title(参考訳): 2段オートエンコーダを用いた大規模流体ハンドリングプラントにおける多変量時系列の異常検出
- Authors: Susumu Naito, Yasunori Taguchi, Kouta Nakata, Yuichi Kato
- Abstract要約: 本稿では,動的成分を有する大規模流体処理プラントにおける時系列データの異常検出に着目する。
このような植物に適した異常検出法として2段階自動エンコーダ(TSAE)を導入する。
- 参考スコア(独自算出の注目度): 1.911678487931003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on anomaly detection for multivariate time series data in
large-scale fluid handling plants with dynamic components, such as power
generation, water treatment, and chemical plants, where signals from various
physical phenomena are observed simultaneously. In these plants, the need for
anomaly detection techniques is increasing in order to reduce the cost of
operation and maintenance, in view of a decline in the number of skilled
engineers and a shortage of manpower. However, considering the complex behavior
of high-dimensional signals and the demand for interpretability, the techniques
constitute a major challenge. We introduce a Two-Stage AutoEncoder (TSAE) as an
anomaly detection method suitable for such plants. This is a simple autoencoder
architecture that makes anomaly detection more interpretable and more accurate,
in which based on the premise that plant signals can be separated into two
behaviors that have almost no correlation with each other, the signals are
separated into long-term and short-term components in a stepwise manner, and
the two components are trained independently to improve the inference
capability for normal signals. Through experiments on two publicly available
datasets of water treatment systems, we have confirmed the high detection
performance, the validity of the premise, and that the model behavior was as
intended, i.e., the technical effectiveness of TSAE.
- Abstract(参考訳): 本稿では, 発電, 水処理, 化学プラントなどの動的成分を有する大規模流体処理プラントにおいて, 様々な物理現象の信号を同時に観測する多変量時系列データの異常検出について検討する。
これらのプラントでは, 熟練技術者の減少と人力不足を踏まえ, 運転・保守コストの低減を図るため, 異常検出技術の必要性が高まっている。
しかし、高次元信号の複雑な挙動と解釈可能性の要求を考えると、この手法は大きな課題となっている。
このような植物に適した異常検出法として2段階自動エンコーダ(TSAE)を導入する。
これは、プラント信号がほぼ相関のない2つの動作に分離できるという前提に基づいて、信号が段階的に長期成分と短期成分に分離され、正常信号の推論能力を改善するために2つのコンポーネントが独立して訓練される単純なオートエンコーダアーキテクチャである。
水処理システムの2つの公開データセットを用いた実験により, 高い検出性能, 前提の妥当性, モデル行動が意図したものであること, 即ちtsaeの技術的有効性を確認した。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in
IIoT Systems [12.641578474466646]
DyEdgeGATは、IIoTシステムにおける早期故障検出の新しいアプローチである。
動作条件コンテキストをノードダイナミックスモデリングに組み込んで、その正確性と堅牢性を高める。
我々は,DyEdgeGATを人工データセットと実世界の産業規模フロー施設ベンチマークの両方を用いて厳格に評価した。
論文 参考訳(メタデータ) (2023-07-07T12:22:16Z) - DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data [0.0]
本稿では,Transformer と Dual Temporal Convolutional Network (TCN) に基づく異常検出・診断モデル DTAAD を提案する。
予測精度の向上と相関性の向上のために,スケーリング手法とフィードバック機構を導入している。
7つの公開データセットに対する実験により、DTAADは検出および診断性能の両面で現在最先端のベースライン法の大部分を超えていることが確認された。
論文 参考訳(メタデータ) (2023-02-17T06:59:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
本稿では,アテンション機構を備えた変分リカレントオートエンコーダに基づく教師なし異常検出手法を提案する。
スマートメーターの「汚れ」データを用いて、学習中の貢献度を減少させるために、欠落した値とグローバルな異常を事前に検出する。
論文 参考訳(メタデータ) (2022-06-08T19:39:51Z) - Detecting and Diagnosing Terrestrial Gravitational-Wave Mimics Through
Feature Learning [0.7388859384645262]
本稿では,超複雑系の突発的過渡異常を検知し,特徴付ける手法の実証について述べる。
重力波の発見を制限する問題の1つは、地球起源のノイズアーティファクトである。
我々は,高度に解釈可能な畳み込み分類器が,補助検出器データから過渡的異常を自動的に検出する方法を示す。
論文 参考訳(メタデータ) (2022-03-09T23:39:41Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。