論文の概要: RAW-Explainer: Post-hoc Explanations of Graph Neural Networks on Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2506.12558v1
- Date: Sat, 14 Jun 2025 15:55:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.484642
- Title: RAW-Explainer: Post-hoc Explanations of Graph Neural Networks on Knowledge Graphs
- Title(参考訳): RAW-Explainer:知識グラフに基づくグラフニューラルネットワークのポストホック説明
- Authors: Ryoji Kubo, Djellel Difallah,
- Abstract要約: RAW-Explainerは、リンク予測のための連結、簡潔、解釈可能なサブグラフ説明を生成するために設計された新しいフレームワークである。
知識グラフに適した既存の手法とは異なり、我々はニューラルネットワークを用いて説明生成プロセスのパラメータ化を行っている。
提案手法は, 説明品質と計算効率のバランスをとる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks have demonstrated state-of-the-art performance on knowledge graph tasks such as link prediction. However, interpreting GNN predictions remains a challenging open problem. While many GNN explainability methods have been proposed for node or graph-level tasks, approaches for generating explanations for link predictions in heterogeneous settings are limited. In this paper, we propose RAW-Explainer, a novel framework designed to generate connected, concise, and thus interpretable subgraph explanations for link prediction. Our method leverages the heterogeneous information in knowledge graphs to identify connected subgraphs that serve as patterns of factual explanation via a random walk objective. Unlike existing methods tailored to knowledge graphs, our approach employs a neural network to parameterize the explanation generation process, which significantly speeds up the production of collective explanations. Furthermore, RAW-Explainer is designed to overcome the distribution shift issue when evaluating the quality of an explanatory subgraph which is orders of magnitude smaller than the full graph, by proposing a robust evaluator that generalizes to the subgraph distribution. Extensive quantitative results on real-world knowledge graph datasets demonstrate that our approach strikes a balance between explanation quality and computational efficiency.
- Abstract(参考訳): グラフニューラルネットワークは,リンク予測などの知識グラフタスクに対して,最先端のパフォーマンスを実証している。
しかし、GNN予測の解釈は依然として困難なオープンな問題である。
ノードレベルのタスクやグラフレベルのタスクに対して多くのGNN説明可能性手法が提案されているが、不均一な環境でリンク予測のための説明を生成するアプローチは限られている。
本稿では,リンク予測のための連結,簡潔,解釈可能なサブグラフ説明を生成する新しいフレームワークであるRAW-Explainerを提案する。
本手法は,知識グラフにおける異種情報を利用して,ランダムウォーク目的による実説明のパターンとして機能する連結部分グラフを同定する。
知識グラフに適した既存の手法とは異なり、我々のアプローチでは、説明生成プロセスのパラメータ化にニューラルネットワークを使用し、集合的説明の生成を著しく高速化する。
さらに、RAW-Explainerは、部分グラフ分布に一般化する頑健な評価器を提案することにより、全グラフよりも桁違いの小さい説明部分グラフの品質を評価する際に、分布シフト問題を克服するように設計されている。
実世界の知識グラフデータセットの大規模な定量的結果は、我々の手法が説明品質と計算効率のバランスをとることを示している。
関連論文リスト
- Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks [17.71313964436965]
GNNの説明可能性のための一般的なパラダイムは、ラベルを元のグラフと比較することで説明可能な部分グラフを特定することである。
この課題は、トレーニングセットの元のグラフから説明可能なサブグラフのセットへの相当な分布シフトのため、難しい。
本稿では,学習データの分布を示す説明可能な部分グラフのプロキシグラフを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-03T05:19:02Z) - Evaluating Link Prediction Explanations for Graph Neural Networks [0.0]
リンク予測説明の質を評価するための指標を提供する。
ノード埋め込み間の距離の選択など,リンク予測タスクに特有の前提条件や技術的詳細が,説明の質にどのように影響するかを論じる。
論文 参考訳(メタデータ) (2023-08-03T10:48:37Z) - MixupExplainer: Generalizing Explanations for Graph Neural Networks with
Data Augmentation [6.307753856507624]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習する能力によって、注目を集めている。
GNN予測を理解するために、ポストホックなインスタンスレベルの説明法が提案されている。
我々は,既存手法における分布シフト問題の存在に光を当て,説明の質に影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-15T15:46:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
既存の説明手法は,教師付き設定,例えばノード分類,グラフ分類に重点を置いているが,教師なしグラフレベルの表現学習に関する説明はまだ探索されていない。
本稿では,非教師付きグラフ表現における説明問題に対処するために,インフォメーション・ボトルネックの原則(IB)を推進し,新しい原理であるtextitUnsupervised Subgraph Information Bottleneck(USIB)を導出する。
また,グラフ表現とラベル空間上の説明部分グラフの関連性も理論的に解析し,表現の堅牢性が説明部分グラフの忠実性に寄与することを明らかにする。
論文 参考訳(メタデータ) (2022-05-20T02:50:15Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
IB-subgraph というサブグラフを認識するための新しいサブグラフ情報ボトルネック(SIB)フレームワークを提案する。
相互情報の抽出性とグラフデータの離散的性質は、SIBの目的を最適化することが難しいことで知られている。
グラフ学習と大規模ポイントクラウドタスクの実験は、ib-subgraphの優れた特性を示している。
論文 参考訳(メタデータ) (2021-03-20T11:19:43Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。