論文の概要: Neural Additive Models for Nowcasting
- arxiv url: http://arxiv.org/abs/2205.10020v1
- Date: Fri, 20 May 2022 08:25:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 03:10:29.949811
- Title: Neural Additive Models for Nowcasting
- Title(参考訳): nowcastingのためのニューラルアダプティブモデル
- Authors: Wonkeun Jo and Dongil Kim
- Abstract要約: ニューラルネットワーク予測のための説明力を提供するために,ニューラルネットワーク付加モデル(NAMs)を提案する。
提案したNAM-NCは,複数の変数と時間ステップに対する各入力値の重要性をうまく説明できることを示す。
また, NAM-NC を用いたパラメータ共有ネットワークを用いて, その複雑性を低減し, NAM-MC のハードタイトな特徴ネットを用いて, 性能のよい説明を抽出した。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) are one of the most highlighted methods in
machine learning. However, as DNNs are black-box models, they lack explanatory
power for their predictions. Recently, neural additive models (NAMs) have been
proposed to provide this power while maintaining high prediction performance.
In this paper, we propose a novel NAM approach for multivariate nowcasting (NC)
problems, which comprise an important focus area of machine learning. For the
multivariate time-series data used in NC problems, explanations should be
considered for every input value to the variables at distinguishable time
steps. By employing generalized additive models, the proposed NAM-NC
successfully explains each input value's importance for multiple variables and
time steps. Experimental results involving a toy example and two real-world
datasets show that the NAM-NC predicts multivariate time-series data as
accurately as state-of-the-art neural networks, while also providing the
explanatory importance of each input value. We also examine parameter-sharing
networks using NAM-NC to decrease their complexity, and NAM-MC's hard-tied
feature net extracted explanations with good performance.
- Abstract(参考訳): ディープニューラルネットワーク(dnn)は、マシンラーニングで最も注目される方法の1つである。
しかし、DNNはブラックボックスモデルであるため、予測には説明力がない。
近年、高い予測性能を維持しつつ、このパワーを提供するためにニューラルネットワーク添加モデル(nams)が提案されている。
本稿では,機械学習の重要な焦点領域を構成する多変量 nowcasting (nc)問題に対する新しいnam手法を提案する。
nc問題に使用される多変量時系列データについては、識別可能な時間ステップにおける変数の入力値ごとに説明を考慮すべきである。
一般化された加法モデルを用いることで、NAM-NCは複数の変数と時間ステップに対する各入力値の重要性をうまく説明できる。
おもちゃの例と2つの実世界のデータセットを含む実験結果は、nam-ncが最先端のニューラルネットワークと同じ精度で多変量時系列データを予測すると同時に、各入力値の説明の重要性も示している。
また,nam-ncを用いたパラメータ共有ネットワークを用いて,その複雑度を低減し,nam-mcのハードタイト特徴ネットを抽出した。
関連論文リスト
- Gaussian Process Neural Additive Models [3.7969209746164325]
ランダムフーリエ特徴を用いたガウス過程の単一層ニューラルネットワーク構築を用いたニューラル付加モデル(NAM)の新たなサブクラスを提案する。
GP-NAMは凸目的関数と、特徴次元と線形に成長する訓練可能なパラメータの数が有利である。
GP-NAMは,パラメータ数を大幅に削減して,分類タスクと回帰タスクの両方において,同等あるいはより優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T20:29:34Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Structural Neural Additive Models: Enhanced Interpretable Machine
Learning [0.0]
近年、この分野は、視覚的に解釈可能なニューラル・アダプティブ・モデル(NAM)のような、解釈可能なニューラルネットワークに向かって進んでいる。
特徴効果の可視化を超越したインテリジェンス指向のさらなるステップを提案し, 構造的ニューラル付加モデル(SNAM)を提案する。
古典的かつ明確に解釈可能な統計手法とニューラルネットワークの予測能力を組み合わせたモデリングフレームワーク。
論文 参考訳(メタデータ) (2023-02-18T09:52:30Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Higher-order Neural Additive Models: An Interpretable Machine Learning
Model with Feature Interactions [2.127049691404299]
深層ニューラルネットワークのようなブラックボックスモデルは優れた予測性能を示すが、その振る舞いを理解することは極めて難しい。
最近提案されたニューラル加算モデル(NAM)は、最先端の解釈可能な機械学習を実現している。
本稿では,高次ニューラル加算モデル (HONAM) と呼ばれる新しい解釈可能な機械学習手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T12:12:30Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - NL-CNN: A Resources-Constrained Deep Learning Model based on Nonlinear
Convolution [0.0]
NL-CNNと略される新しい畳み込みニューラルネットワークモデルが提案され、非線型畳み込みは畳み込み+非線形性層のカスケードでエミュレートされる。
いくつかの広く知られているデータセットのパフォーマンス評価が提供され、いくつかの関連する特徴を示している。
論文 参考訳(メタデータ) (2021-01-30T13:38:42Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。