Privacy Preserving Image Registration
- URL: http://arxiv.org/abs/2205.10120v7
- Date: Tue, 16 Apr 2024 09:03:32 GMT
- Title: Privacy Preserving Image Registration
- Authors: Riccardo Taiello, Melek Önen, Francesco Capano, Olivier Humbert, Marco Lorenzi,
- Abstract summary: We formulate the problem of image registration under a privacy preserving regime, where images are assumed to be confidential and cannot be disclosed in clear.
We extend classical registration paradigms to account for advanced cryptographic tools, such as secure multi-party computation and homomorphic encryption.
Our results show that privacy preserving image registration is feasible and can be adopted in sensitive medical imaging applications.
- Score: 4.709526996577762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration is a key task in medical imaging applications, allowing to represent medical images in a common spatial reference frame. Current approaches to image registration are generally based on the assumption that the content of the images is usually accessible in clear form, from which the spatial transformation is subsequently estimated. This common assumption may not be met in practical applications, since the sensitive nature of medical images may ultimately require their analysis under privacy constraints, preventing to openly share the image content.In this work, we formulate the problem of image registration under a privacy preserving regime, where images are assumed to be confidential and cannot be disclosed in clear. We derive our privacy preserving image registration framework by extending classical registration paradigms to account for advanced cryptographic tools, such as secure multi-party computation and homomorphic encryption, that enable the execution of operations without leaking the underlying data. To overcome the problem of performance and scalability of cryptographic tools in high dimensions, we propose several techniques to optimize the image registration operations by using gradient approximations, and by revisiting the use of homomorphic encryption trough packing, to allow the efficient encryption and multiplication of large matrices. We demonstrate our privacy preserving framework in linear and non-linear registration problems, evaluating its accuracy and scalability with respect to standard, non-private counterparts. Our results show that privacy preserving image registration is feasible and can be adopted in sensitive medical imaging applications.
Related papers
- Privacy Challenges In Image Processing Applications [0.9374652839580183]
Key applications with heightened privacy risks include healthcare, where medical images contain patient health data, and surveillance systems that can enable unwarranted tracking.<n> Differential privacy offers rigorous privacy guarantees by injecting controlled noise, while MPC facilitates collaborative analytics without exposing raw data inputs.<n>Homomorphic encryption enables computations on encrypted data and anonymization directly removes identifying elements.
arXiv Detail & Related papers (2025-05-07T07:28:03Z) - Enhancing Privacy-Utility Trade-offs to Mitigate Memorization in Diffusion Models [62.979954692036685]
We introduce PRSS, which refines the classifier-free guidance approach in diffusion models by integrating prompt re-anchoring and semantic prompt search.
Our approach consistently improves the privacy-utility trade-off, establishing a new state-of-the-art.
arXiv Detail & Related papers (2025-04-25T02:51:23Z) - Enhancing Privacy in Face Analytics Using Fully Homomorphic Encryption [8.742970921484371]
We propose a novel technique that combines Fully Homomorphic Encryption (FHE) with an existing template protection scheme known as PolyProtect.
Our proposed approach ensures irreversibility and unlinkability, effectively preventing the leakage of soft biometric embeddings.
arXiv Detail & Related papers (2024-04-24T23:56:03Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
We introduce an innovative image transformation technique that renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models.
The proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close.
We show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy.
arXiv Detail & Related papers (2024-01-26T18:20:53Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
We propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners.
Experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets.
arXiv Detail & Related papers (2022-12-04T08:49:14Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - Toward Privacy and Utility Preserving Image Representation [26.768476643200664]
We study the novel problem of creating privacy-preserving image representations with respect to a given utility task.
We propose a principled framework called the Adversarial Image Anonymizer (AIA)
AIA first creates an image representation using a generative model, then enhances the learned image representations using adversarial learning to preserve privacy and utility for a given task.
arXiv Detail & Related papers (2020-09-30T01:25:00Z) - Privacy-Preserving Image Features via Adversarial Affine Subspace
Embeddings [72.68801373979943]
Many computer vision systems require users to upload image features to the cloud for processing and storage.
We propose a new privacy-preserving feature representation.
Compared to the original features, our approach makes it significantly more difficult for an adversary to recover private information.
arXiv Detail & Related papers (2020-06-11T17:29:48Z) - Privacy-Preserving Image Sharing via Sparsifying Layers on Convolutional
Groups [11.955557264002204]
We propose a practical framework to address the problem of privacy-aware image sharing in large-scale setups.
We encode images, such that, from one hand, representations are stored in the public domain without paying the huge cost of privacy protection.
authorized users are provided with very compact keys that can easily be kept secure.
This can be used to disambiguate and faithfully reconstruct the corresponding access-granted images.
arXiv Detail & Related papers (2020-02-04T18:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.