論文の概要: Reliability-based Mesh-to-Grid Image Reconstruction
- arxiv url: http://arxiv.org/abs/2205.10138v1
- Date: Fri, 20 May 2022 12:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 22:05:05.369913
- Title: Reliability-based Mesh-to-Grid Image Reconstruction
- Title(参考訳): 信頼性に基づくメッシュ・グリッド画像再構成
- Authors: J\'an Koloda, J\"urgen Seiler and Andr\'e Kaup
- Abstract要約: 本稿では,メッシュと呼ばれる非整数位置にあるサンプルからの画像の再構成を行う新しい手法を提案する。
提案手法は、後に新しい信頼性ベースのコンテンツ適応フレームワークによって改善された初期推定値のセットに依存する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel method for the reconstruction of images from
samples located at non-integer positions, called mesh. This is a common
scenario for many image processing applications, such as super-resolution,
warping or virtual view generation in multi-camera systems. The proposed method
relies on a set of initial estimates that are later refined by a new
reliability-based content-adaptive framework that employs denoising in order to
reduce the reconstruction error. The reliability of the initial estimate is
computed so stronger denoising is applied to less reliable estimates. The
proposed technique can improve the reconstruction quality by more than 2 dB (in
terms of PSNR) with respect to the initial estimate and it outperforms the
state-of-the-art denoising-based refinement by up to 0.7 dB.
- Abstract(参考訳): 本稿では,非整数位置に位置する試料からの画像再構成法であるメッシュについて述べる。
これは、スーパーレゾリューション、ワーピング、マルチカメラシステムでの仮想ビュー生成など、多くの画像処理アプリケーションで一般的なシナリオである。
提案手法は,リコンストラクションエラーを低減するためにデノイジングを用いる新たな信頼性ベースのコンテンツ適応フレームワークにより,後に洗練される一連の初期推定値に依存する。
初期推定の信頼性が計算され、より信頼性の低い推定に強い分別が適用される。
提案手法は,初期推定値に対して2dB以上(PSNR)で再現品質を向上し,最先端の復調法を最大0.7dB向上させる。
関連論文リスト
- Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras [3.400056739248712]
本稿では,自然画像と合成画像の両方に依存した画像復元ニューラルネットワークの混合訓練手法を提案する。
提案手法の有効性は,RGB画像のノイズ化とRAW画像のフル開発の両方において実証され,実際の撮像装置のテクスチャ精度の体系的改善への道のりが開かれた。
論文 参考訳(メタデータ) (2024-02-20T10:47:06Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
速度歪みの最適化を改良した新しいGANベースの画像圧縮手法を提案する。
これを実現するために、DisTSとMS-SSIMのメトリクスを用いて、色、テクスチャ、構造における知覚的変性を測定する。
提案手法は,既存のGAN法および最先端ハイブリッド(VVC)よりも優れている。
論文 参考訳(メタデータ) (2023-06-18T03:21:11Z) - Uncertainty-Aware Null Space Networks for Data-Consistent Image
Reconstruction [0.0]
近年の深層学習の進歩をもとに,最先端の再構築手法が開発されている。
医用画像などの安全クリティカルな領域で使用するためには, ネットワーク再構築は, 利用者に再構成画像を提供するだけでなく, ある程度の信頼を得る必要がある。
この研究は、入力依存のスケールマップを推定することによって、データ依存の不確実性をモデル化する逆問題に対する最初のアプローチである。
論文 参考訳(メタデータ) (2023-04-14T06:58:44Z) - Residual Back Projection With Untrained Neural Networks [1.2707050104493216]
CT(Computed tomography)における反復的再構成(IR)の枠組みについて述べる。
我々のフレームワークは、この構造情報をDIP(Deep Image Prior)として組み込んでいる。
対象関数を最小限に抑え,高精度な再構成を実現するために,未学習のU-netと新たな後方投射を併用して提案する。
論文 参考訳(メタデータ) (2022-10-26T01:58:09Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Unsupervised PET Reconstruction from a Bayesian Perspective [12.512270202705404]
DeepREDはDIPと正規化を組み合わせた典型的な表現である(RED)
本稿では,ベイズ的な視点からDeepREDを活用して,教師付き情報や補助情報のない単一劣化したシングラムからPET画像の再構成を行う。
論文 参考訳(メタデータ) (2021-10-29T06:32:21Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Attention Based Real Image Restoration [48.933507352496726]
深層畳み込みニューラルネットワークは、合成劣化を含む画像に対してより良い性能を発揮する。
本稿では,新しい1段ブラインド実画像復元ネットワーク(R$2$Net)を提案する。
論文 参考訳(メタデータ) (2020-04-26T04:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。