Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application
- URL: http://arxiv.org/abs/2205.10146v1
- Date: Fri, 20 May 2022 12:42:41 GMT
- Title: Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application
- Authors: Risheng Liu, Jiaxin Gao, Xuan Liu and Xin Fan
- Abstract summary: Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
- Score: 49.66088514485446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In past years, the minimax type single-level optimization formulation and its
variations have been widely utilized to address Generative Adversarial Networks
(GANs). Unfortunately, it has been proved that these alternating learning
strategies cannot exactly reveal the intrinsic relationship between the
generator and discriminator, thus easily result in a series of issues,
including mode collapse, vanishing gradients and oscillations in the training
phase, etc. In this work, by investigating the fundamental mechanism of GANs
from the perspective of hierarchical optimization, we propose Best-Response
Constraint (BRC), a general learning framework, that can explicitly formulate
the potential dependency of the generator on the discriminator. Rather than
adopting these existing time-consuming bilevel iterations, we design an
implicit gradient scheme with outer-product Hessian approximation as our fast
solution strategy. \emph{Noteworthy, we demonstrate that even with different
motivations and formulations, a variety of existing GANs ALL can be uniformly
improved by our flexible BRC methodology.} Extensive quantitative and
qualitative experimental results verify the effectiveness, flexibility and
stability of our proposed framework.
Related papers
- Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - Inference-InfoGAN: Inference Independence via Embedding Orthogonal Basis
Expansion [2.198430261120653]
Disentanglement learning aims to construct independent and interpretable latent variables in which generative models are a popular strategy.
We propose a novel GAN-based disentanglement framework via embedding Orthogonal Basis Expansion (OBE) into InfoGAN network.
Our Inference-InfoGAN achieves higher disentanglement score in terms of FactorVAE, Separated ferenceAttribute Predictability (SAP), Mutual Information Gap (MIG) and Variation Predictability (VP) metrics without model fine-tuning.
arXiv Detail & Related papers (2021-10-02T11:54:23Z) - A Generic Descent Aggregation Framework for Gradient-based Bi-level
Optimization [41.894281911990554]
We develop a novel Bi-level Descent Aggregation (BDA) framework for bi-level learning tasks.
BDA aggregates hierarchical objectives of both upper level and lower level.
We propose a new proof recipe to improve the convergence results of conventional gradient-based bi-level methods.
arXiv Detail & Related papers (2021-02-16T06:58:12Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
This paper presents a framework to tackle constrained optimization problems using deep Reinforcement Learning (RL)
We extend the Neural Combinatorial Optimization (NCO) theory in order to deal with constraints in its formulation.
In that context, the solution is iteratively constructed based on interactions with the environment.
arXiv Detail & Related papers (2020-06-22T03:13:07Z) - Generalized Adversarially Learned Inference [42.40405470084505]
We develop methods of inference of latent variables in GANs by adversarially training an image generator along with an encoder to match two joint distributions of image and latent vector pairs.
We incorporate multiple layers of feedback on reconstructions, self-supervision, and other forms of supervision based on prior or learned knowledge about the desired solutions.
arXiv Detail & Related papers (2020-06-15T02:18:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.