Salient Skin Lesion Segmentation via Dilated Scale-Wise Feature Fusion
Network
- URL: http://arxiv.org/abs/2205.10272v1
- Date: Fri, 20 May 2022 16:08:37 GMT
- Title: Salient Skin Lesion Segmentation via Dilated Scale-Wise Feature Fusion
Network
- Authors: Pourya Shamsolmoali, Masoumeh Zareapoor, Eric Granger, Huiyu Zhou
- Abstract summary: Current skin lesion segmentation approaches show poor performance in challenging circumstances.
We propose a dilated scale-wise feature fusion network based on convolution factorization.
Our proposed model consistently showcases state-of-the-art results.
- Score: 28.709314434820953
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Skin lesion detection in dermoscopic images is essential in the accurate and
early diagnosis of skin cancer by a computerized apparatus. Current skin lesion
segmentation approaches show poor performance in challenging circumstances such
as indistinct lesion boundaries, low contrast between the lesion and the
surrounding area, or heterogeneous background that causes over/under
segmentation of the skin lesion. To accurately recognize the lesion from the
neighboring regions, we propose a dilated scale-wise feature fusion network
based on convolution factorization. Our network is designed to simultaneously
extract features at different scales which are systematically fused for better
detection. The proposed model has satisfactory accuracy and efficiency. Various
experiments for lesion segmentation are performed along with comparisons with
the state-of-the-art models. Our proposed model consistently showcases
state-of-the-art results.
Related papers
- LSSF-Net: Lightweight Segmentation with Self-Awareness, Spatial Attention, and Focal Modulation [8.566930077350184]
We propose a novel lightweight network specifically designed for skin lesion segmentation utilizing mobile devices.
Our network comprises an encoder-decoder architecture that incorporates conformer-based focal modulation attention, self-aware local and global spatial attention, and split channel-shuffle.
Empirical findings substantiate its state-of-the-art performance, notably reflected in a high Jaccard index.
arXiv Detail & Related papers (2024-09-03T03:06:32Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Unsupervised Skin Lesion Segmentation via Structural Entropy
Minimization on Multi-Scale Superpixel Graphs [59.19218582436495]
We propose an unsupervised Skin Lesion sEgmentation framework based on structural entropy and isolation forest outlier Detection, namely SLED.
Skin lesions are segmented by minimizing the structural entropy of a superpixel graph constructed from the dermoscopic image.
We characterize the consistency of healthy skin features and devise a novel multi-scale segmentation mechanism by outlier detection, which enhances the segmentation accuracy by leveraging the superpixel features from multiple scales.
arXiv Detail & Related papers (2023-09-05T02:15:51Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A Survey on Deep Learning for Skin Lesion Segmentation [32.523358996420846]
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease.
Skin lesion segmentation from images is an important step toward achieving this goal.
The presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task.
arXiv Detail & Related papers (2022-06-01T09:43:10Z) - Dermoscopic Image Classification with Neural Style Transfer [5.314466196448187]
We propose an adaptation of the Neural Style Transfer (NST) as a novel image pre-processing step for skin lesion classification problems.
We represent each dermoscopic image as the style image and transfer the style of the lesion onto a homogeneous content image.
This transfers the main variability of each lesion onto the same localized region, which allows us to integrate the generated images together and extract latent, low-rank style features.
arXiv Detail & Related papers (2021-05-17T03:50:51Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Bi-directional Dermoscopic Feature Learning and Multi-scale Consistent
Decision Fusion for Skin Lesion Segmentation [28.300486641368234]
We propose a novel bi-directional dermoscopic feature learning (biDFL) framework to model the complex correlation between skin lesions and their informative context.
We also propose a multi-scale consistent decision fusion (mCDF) that is capable of selectively focusing on the informative decisions generated from multiple classification layers.
arXiv Detail & Related papers (2020-02-20T12:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.