Efficient visual object representation using a biologically plausible
spike-latency code and winner-take-all inhibition
- URL: http://arxiv.org/abs/2205.10338v1
- Date: Fri, 20 May 2022 17:48:02 GMT
- Title: Efficient visual object representation using a biologically plausible
spike-latency code and winner-take-all inhibition
- Authors: Melani Sanchez-Garcia and Michael Beyeler
- Abstract summary: spiking neural networks (SNNs) have the potential to improve the efficiency and biological plausibility of object recognition systems.
We present a SNN model that uses spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli.
We demonstrate that a network of 150 spiking neurons can efficiently represent objects with as little as 40 spikes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have surpassed human performance in key visual
challenges such as object recognition, but require a large amount of energy,
computation, and memory. In contrast, spiking neural networks (SNNs) have the
potential to improve both the efficiency and biological plausibility of object
recognition systems. Here we present a SNN model that uses spike-latency coding
and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli
from the Fashion MNIST dataset. Stimuli were preprocessed with center-surround
receptive fields and then fed to a layer of spiking neurons whose synaptic
weights were updated using spike-timing-dependent-plasticity (STDP). We
investigate how the quality of the represented objects changes under different
WTA-I schemes and demonstrate that a network of 150 spiking neurons can
efficiently represent objects with as little as 40 spikes. Studying how core
object recognition may be implemented using biologically plausible learning
rules in SNNs may not only further our understanding of the brain, but also
lead to novel and efficient artificial vision systems.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - When Spiking neural networks meet temporal attention image decoding and adaptive spiking neuron [7.478056407323783]
Spiking Neural Networks (SNNs) are capable of encoding and processing temporal information in a biologically plausible way.
We propose a novel method for image decoding based on temporal attention (TAID) and an adaptive Leaky-Integrate-and-Fire neuron model.
arXiv Detail & Related papers (2024-06-05T08:21:55Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain.
This paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (LIFB) neuron that can make a trade-off between short-time performance and dynamic temporal performance.
arXiv Detail & Related papers (2023-01-29T04:22:07Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - Spiking Neural Networks for Frame-based and Event-based Single Object
Localization [26.51843464087218]
Spiking neural networks have shown much promise as an energy-efficient alternative to artificial neural networks.
We propose a spiking neural network approach for single object localization trained using surrogate gradient descent.
We compare our method with similar artificial neural networks and show that our model has competitive/better performance in accuracy, against various corruptions, and has lower energy consumption.
arXiv Detail & Related papers (2022-06-13T22:22:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.