Selective and efficient quantum process tomography for non-trace
preserving maps: a superconducting quantum processor implementation
- URL: http://arxiv.org/abs/2205.10453v3
- Date: Thu, 26 Jan 2023 17:04:23 GMT
- Title: Selective and efficient quantum process tomography for non-trace
preserving maps: a superconducting quantum processor implementation
- Authors: Quimey Pears Stefano, Ignacio Perito and Lorena Reb\'on
- Abstract summary: We describe a general type of quantum process that does not preserve the trace of the input quantum state.
We show that with the aid of it a priori information on the losses structure of the quantum channel, the reconstruction can be adapted to reconstruct the non-trace-preserving map.
Our results show that it is possible to efficiently reconstruct non trace-preserving processes, with high precision, and with significantly higher fidelity than when the process is assumed to be trace-preserving.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alternatively to the full reconstruction of an unknown quantum process, the
so-called selective and efficient quantum process tomography (SEQPT) allows
estimating, individually and up to the required accuracy, a given element of
the matrix that describes such an operation with a polynomial amount of
resources. The implementation of this protocol has been carried out with
success to characterize the evolution of a quantum system that is well
described by a trace preserving quantum map. Here, we deal with a more general
type of quantum process that does not preserve the trace of the input quantum
state, which naturally arises in the presence of imperfect devices and
system-environment interactions, in the context of quantum information science
or quantum dynamics control. In that case, we show that with the aid of {\it a
priori} information on the losses structure of the quantum channel, the SEQPT
reconstruction can be adapted to reconstruct the non-trace-preserving map. We
explicitly describe how to implement the reconstruction in an arbitrary Hilbert
space of finite dimension $d$. The method is experimentally verified on a
superconducting quantum processor of the IBM Quantum services, by estimating
several non trace-preserving quantum processes in dimensions up to $d=6$. Our
results show that it is possible to efficiently reconstruct non
trace-preserving processes, with high precision, and with significantly higher
fidelity than when the process is assumed to be trace-preserving.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Realizing Non-Physical Actions through Hermitian-Preserving Map
Exponentiation [1.0255759863714506]
We introduce the Hermitian-preserving mapiation algorithm, which can effectively realize the action of an arbitrary Hermitian-preserving map by encoding its output into a quantum process.
Our findings present a pathway for systematically and efficiently implementing non-physical actions with quantum devices.
arXiv Detail & Related papers (2023-08-15T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Variational quantum process tomography [12.843681115589122]
We put forward a quantum machine learning algorithm which encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit.
Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
arXiv Detail & Related papers (2021-08-05T03:36:26Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
We propose an alternative approach to QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits.
Our goal is to provide a practical inference of a quantum system in a pure state that can find its applications in the field of quantum error mitigation on a real quantum computer.
arXiv Detail & Related papers (2021-07-02T16:58:26Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.