論文の概要: Computable Artificial General Intelligence
- arxiv url: http://arxiv.org/abs/2205.10513v1
- Date: Sat, 21 May 2022 06:32:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 18:26:29.921088
- Title: Computable Artificial General Intelligence
- Title(参考訳): 計算可能な人工知能
- Authors: Michael Timothy Bennett
- Abstract要約: 人工知能(Artificial General Intelligence, AGI)は、正確な予測を行うために、他のどのエージェントよりも少ない情報を必要とするエージェントである。
一般的な強化学習エージェントであるAIXIが、この定義を満たしただけでなく、それを行う唯一の数学的形式主義であったことは疑わしい。
本稿では,両問題を克服するAGIの代替形式性を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An artificial general intelligence (AGI), by one definition, is an agent that
requires less information than any other to make an accurate prediction. It is
arguable that the general reinforcement learning agent AIXI not only met this
definition, but was the only mathematical formalism to do so. Though a
significant result, AIXI was incomputable and its performance subjective. This
paper proposes an alternative formalism of AGI which overcomes both problems.
Formal proof of its performance is given, along with a simple implementation
and experimental results that support these claims.
- Abstract(参考訳): 人工知能(artificial general intelligence, agi)は、正確な予測を行うために、他のどの情報よりも少ない情報を必要とするエージェントである。
一般的な強化学習エージェントであるAIXIが、この定義を満たしただけでなく、それを行う唯一の数学的形式主義であったことは疑わしい。
重要な結果となったが、AIXIは計算不能であり、性能は主観的であった。
本稿では,両問題を克服するAGIの代替形式性を提案する。
その性能の形式的な証明と、これらの主張をサポートする単純な実装と実験結果が与えられる。
関連論文リスト
- Explainable AI needs formal notions of explanation correctness [2.1309989863595677]
医学のような重要な分野における機械学習はリスクをもたらし、規制を必要とする。
1つの要件は、リスクの高いアプリケーションにおけるMLシステムの決定は、人間に理解可能なものであるべきです。
現在の形式では、XAIはMLの品質管理に不適であり、それ自体は精査が必要である。
論文 参考訳(メタデータ) (2024-09-22T20:47:04Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Locally-Minimal Probabilistic Explanations [33.95940778422656]
説明可能な人工知能(XAI)に関するほとんどの研究は厳密な保証を提供していない。
高度な領域、例えば人間に影響を与えるAIの使用では、説明の厳密さの欠如は悲惨な結果をもたらす可能性がある。
本稿では,局所最小PXApsの計算アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-19T03:45:27Z) - A Theory for Emergence of Complex Skills in Language Models [56.947273387302616]
今日のAI製品の主要な要因は、パラメータセットとトレーニングコーパスのスケールアップ時に、言語モデルに新たなスキルが現れることだ。
本稿では,LSMの有名な(かつ実証的な)スケーリング法則と単純な統計的枠組みを用いて,その出現を解析する。
論文 参考訳(メタデータ) (2023-07-29T09:22:54Z) - On Formal Feature Attribution and Its Approximation [37.3078859524959]
本稿では,形式的説明列挙に基づく特徴属性に対する形式的XAIの応用法を提案する。
この問題の実際的な複雑さを考慮し, 正確なFFAを近似する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-07T04:20:36Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
本研究では、Boundless DASを用いて、命令に従う間、大規模言語モデルにおける解釈可能な因果構造を効率的に探索する。
私たちの発見は、成長し、最も広くデプロイされている言語モデルの内部構造を忠実に理解するための第一歩です。
論文 参考訳(メタデータ) (2023-05-15T17:15:40Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
システムモデルを自動的に導出する際、AIアルゴリズムは人間には検出できないデータで関係を学習する。
モデルが複雑になればなるほど、人間が意思決定の理由を理解するのが難しくなる。
この研究は、この話題に関する広範な文献調査を提供し、その大部分は、他の調査から成っている。
論文 参考訳(メタデータ) (2022-10-11T06:21:47Z) - TRUST XAI: Model-Agnostic Explanations for AI With a Case Study on IIoT
Security [0.0]
我々は,トランスパラシー・アポン・統計理論(XAI)という普遍的XAIモデルを提案する。
TRUST XAIが, 平均成功率98%の新しいランダムサンプルについて, どのように説明するかを示す。
最後に、TRUSTがユーザに対してどのように説明されるかを示す。
論文 参考訳(メタデータ) (2022-05-02T21:44:27Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Training a First-Order Theorem Prover from Synthetic Data [50.23600875138756]
自動定理証明に機械学習を適用する際の大きな課題は、トレーニングデータの不足である。
本稿では,人間のデータを公理によらずに,純粋に合成生成定理をトレーニングする手法を提案する。
私達の神経証明者は時間および検索のステップのこの総合的なデータで最先端のE-proverを上回っます。
論文 参考訳(メタデータ) (2021-03-05T17:01:34Z) - SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar [74.1315776256292]
本稿では, 問題解決における人間の精神状態を表現する心理学研究から生まれた, emphsituation modelの概念を紹介する。
提案モデルでは,より優れた解釈性を保ちながら,従来のすべてのニューラルソルバを大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2020-12-27T21:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。