論文の概要: Neuroevolutionary Feature Representations for Causal Inference
- arxiv url: http://arxiv.org/abs/2205.10541v1
- Date: Sat, 21 May 2022 09:13:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 16:04:10.012666
- Title: Neuroevolutionary Feature Representations for Causal Inference
- Title(参考訳): 因果推論のための神経進化的特徴表現
- Authors: Michael C. Burkhart and Gabriel Ruiz
- Abstract要約: 本稿では,条件付き平均処理効果(CATE)の推定を支援する特徴表現の学習手法を提案する。
本手法は,特徴量から得られる結果を予測するために訓練されたニューラルネットワークの中間層に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the field of causal inference, we consider the problem of estimating
heterogeneous treatment effects from data. We propose and validate a novel
approach for learning feature representations to aid the estimation of the
conditional average treatment effect or CATE. Our method focuses on an
intermediate layer in a neural network trained to predict the outcome from the
features. In contrast to previous approaches that encourage the distribution of
representations to be treatment-invariant, we leverage a genetic algorithm that
optimizes over representations useful for predicting the outcome to select
those less useful for predicting the treatment. This allows us to retain
information within the features useful for predicting outcome even if that
information may be related to treatment assignment. We validate our method on
synthetic examples and illustrate its use on a real life dataset.
- Abstract(参考訳): 因果推論の分野において、データから不均一な治療効果を推定する問題を考察する。
本研究では,条件付き平均処理効果(CATE)の推定を支援する特徴表現の学習手法を提案する。
本手法は,特徴から結果を予測するように訓練されたニューラルネットワークの中間層に着目した。
治療不変な表現の分布を促す従来のアプローチとは対照的に, 結果を予測するのに有用な表現を最適化し, 治療予測にあまり役に立たない表現を選択する遺伝的アルゴリズムを活用する。
これにより、治療課題に関連する情報であっても、結果を予測するのに有用な機能内に情報を保持することができる。
本手法を合成例で検証し,実生活データセット上での利用例を示す。
関連論文リスト
- Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments [0.0]
テキストなどの非構造的高次元処理による因果推論の有効性を高める方法について述べる。
本稿では,大規模言語モデル(LLM)のような深層生成モデルを用いて治療を効率的に生成することを提案する。
論文 参考訳(メタデータ) (2024-10-01T17:46:21Z) - Estimating Conditional Average Treatment Effects via Sufficient Representation Learning [31.822980052107496]
本稿では,その特徴を十分に表現するためにtextbfCrossNet という新しいニューラルネットワークアプローチを提案し,条件平均処理効果(CATE)を推定する。
数値シミュレーションと実験により,本手法が競合手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-30T07:23:59Z) - Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
ランダム化実験における分散処理効果パラメータを推定するための新しい回帰調整法を提案する。
提案手法では,事前処理による協調処理を分散回帰フレームワークに組み込み,機械学習技術を用いて分散処理効果推定器の精度を向上させる。
論文 参考訳(メタデータ) (2024-07-22T20:28:29Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
因果効果推定は、平均処理効果と、治療の条件平均処理効果を、利用可能なデータから得られる結果に推定することを目的としている。
本稿では,C-XGBoost という新たな因果推論モデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T17:43:37Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Causal Inference from Small High-dimensional Datasets [7.1894784995284144]
Causal-Batleは、小さな高次元データセットにおける治療効果を推定する手法である。
我々は、因果推論に伝達学習技術をもたらすアプローチを採用する。
論文 参考訳(メタデータ) (2022-05-19T02:04:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。