Neuroevolutionary Feature Representations for Causal Inference
- URL: http://arxiv.org/abs/2205.10541v1
- Date: Sat, 21 May 2022 09:13:04 GMT
- Title: Neuroevolutionary Feature Representations for Causal Inference
- Authors: Michael C. Burkhart and Gabriel Ruiz
- Abstract summary: We propose a novel approach for learning feature representations to aid the estimation of the conditional average treatment effect or CATE.
Our method focuses on an intermediate layer in a neural network trained to predict the outcome from the features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the field of causal inference, we consider the problem of estimating
heterogeneous treatment effects from data. We propose and validate a novel
approach for learning feature representations to aid the estimation of the
conditional average treatment effect or CATE. Our method focuses on an
intermediate layer in a neural network trained to predict the outcome from the
features. In contrast to previous approaches that encourage the distribution of
representations to be treatment-invariant, we leverage a genetic algorithm that
optimizes over representations useful for predicting the outcome to select
those less useful for predicting the treatment. This allows us to retain
information within the features useful for predicting outcome even if that
information may be related to treatment assignment. We validate our method on
synthetic examples and illustrate its use on a real life dataset.
Related papers
- Estimating Conditional Average Treatment Effects via Sufficient Representation Learning [31.822980052107496]
This paper proposes a novel neural network approach named textbfCrossNet to learn a sufficient representation for the features, based on which we then estimate the conditional average treatment effects (CATE)
Numerical simulations and empirical results demonstrate that our method outperforms the competitive approaches.
arXiv Detail & Related papers (2024-08-30T07:23:59Z) - Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction [6.909352249236339]
We propose a novel regression adjustment method designed for estimating distributional treatment effect parameters in randomized experiments.
Our approach incorporates pre-treatment co-treatments into a distributional regression framework, utilizing machine learning techniques to improve the precision of distributional treatment effect estimators.
arXiv Detail & Related papers (2024-07-22T20:28:29Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Causal Inference from Small High-dimensional Datasets [7.1894784995284144]
Causal-Batle is a methodology to estimate treatment effects in small high-dimensional datasets.
We adopt an approach that brings transfer learning techniques into causal inference.
arXiv Detail & Related papers (2022-05-19T02:04:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.