Estimating Conditional Average Treatment Effects via Sufficient Representation Learning
- URL: http://arxiv.org/abs/2408.17053v1
- Date: Fri, 30 Aug 2024 07:23:59 GMT
- Title: Estimating Conditional Average Treatment Effects via Sufficient Representation Learning
- Authors: Pengfei Shi, Wei Zhong, Xinyu Zhang, Ningtao Wang, Xing Fu, Weiqiang Wang, Yin Jin,
- Abstract summary: This paper proposes a novel neural network approach named textbfCrossNet to learn a sufficient representation for the features, based on which we then estimate the conditional average treatment effects (CATE)
Numerical simulations and empirical results demonstrate that our method outperforms the competitive approaches.
- Score: 31.822980052107496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the conditional average treatment effects (CATE) is very important in causal inference and has a wide range of applications across many fields. In the estimation process of CATE, the unconfoundedness assumption is typically required to ensure the identifiability of the regression problems. When estimating CATE using high-dimensional data, there have been many variable selection methods and neural network approaches based on representation learning, while these methods do not provide a way to verify whether the subset of variables after dimensionality reduction or the learned representations still satisfy the unconfoundedness assumption during the estimation process, which can lead to ineffective estimates of the treatment effects. Additionally, these methods typically use data from only the treatment or control group when estimating the regression functions for each group. This paper proposes a novel neural network approach named \textbf{CrossNet} to learn a sufficient representation for the features, based on which we then estimate the CATE, where cross indicates that in estimating the regression functions, we used data from their own group as well as cross-utilized data from another group. Numerical simulations and empirical results demonstrate that our method outperforms the competitive approaches.
Related papers
- Predictive Performance Test based on the Exhaustive Nested Cross-Validation for High-dimensional data [7.62566998854384]
Cross-validation is used for several tasks such as estimating the prediction error, tuning the regularization parameter, and selecting the most suitable predictive model.
The K-fold cross-validation is a popular CV method but its limitation is that the risk estimates are highly dependent on the partitioning of the data.
This study presents an alternative novel predictive performance test and valid confidence intervals based on exhaustive nested cross-validation.
arXiv Detail & Related papers (2024-08-06T12:28:16Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Neuroevolutionary Feature Representations for Causal Inference [0.0]
We propose a novel approach for learning feature representations to aid the estimation of the conditional average treatment effect or CATE.
Our method focuses on an intermediate layer in a neural network trained to predict the outcome from the features.
arXiv Detail & Related papers (2022-05-21T09:13:04Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.