A Pilot Study of Relating MYCN-Gene Amplification with
Neuroblastoma-Patient CT Scans
- URL: http://arxiv.org/abs/2205.10619v1
- Date: Sat, 21 May 2022 15:14:24 GMT
- Title: A Pilot Study of Relating MYCN-Gene Amplification with
Neuroblastoma-Patient CT Scans
- Authors: Zihan Zhang, Xiang Xiang, Xuehua Peng, Jianbo Shao
- Abstract summary: We adopt multiple machine learning (ML) algorithms to predict the presence or absence of MYCN gene amplification.
The dataset is composed of retrospective CT images of 23 neuroblastoma patients.
CNN-based method uses pre-trained convolutional neural network, and radiomics-based method extracts radiomics features.
- Score: 14.442730976318726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuroblastoma is one of the most common cancers in infants, and the initial
diagnosis of this disease is difficult. At present, the MYCN gene amplification
(MNA) status is detected by invasive pathological examination of tumor samples.
This is time-consuming and may have a hidden impact on children. To handle this
problem, we adopt multiple machine learning (ML) algorithms to predict the
presence or absence of MYCN gene amplification. The dataset is composed of
retrospective CT images of 23 neuroblastoma patients. Different from previous
work, we develop the algorithm without manually-segmented primary tumors which
is time-consuming and not practical. Instead, we only need the coordinate of
the center point and the number of tumor slices given by a subspecialty-trained
pediatric radiologist. Specifically, CNN-based method uses pre-trained
convolutional neural network, and radiomics-based method extracts radiomics
features. Our results show that CNN-based method outperforms the
radiomics-based method.
Related papers
- Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Multiple Instance Neural Networks Based on Sparse Attention for Cancer
Detection using T-cell Receptor Sequences [10.199698726118003]
We propose multiple instance neural networks based on sparse attention (MINN-SA) to enhance the performance in cancer detection and explainability.
MINN-SA yields the highest area under the ROC curve (AUC) scores on average measured across 10 different types of cancers.
arXiv Detail & Related papers (2022-08-09T03:24:03Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
We develop a multimodal late fusion approach to predict radiation therapy outcomes for non-small-cell lung cancer patients.
Experiments show that the proposed multimodal paradigm with an AUC equal to $90.9%$ outperforms each unimodal approach.
arXiv Detail & Related papers (2022-04-26T16:32:52Z) - Improving the Segmentation of Pediatric Low-Grade Gliomas through
Multitask Learning [0.1199955563466263]
We developed a segmentation model trained on magnetic resonance imaging (MRI) of pediatric patients with low-grade gliomas (pLGGs)
The proposed model utilizes deep Multitask Learning (dMTL) by adding tumor's genetic alteration classifier as an auxiliary task to the main network.
arXiv Detail & Related papers (2021-11-29T21:12:47Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - Predicting invasive ductal carcinoma using a Reinforcement Sample
Learning Strategy using Deep Learning [0.951828574518325]
Invasive ductal carcinoma is the second leading cause of death from cancer in women.
Due to the varying image clarity and structure of certain mammograms, it is difficult to observe major cancer characteristics.
This article presents a tumor classification algorithm that makes novel use of convolutional neural networks on breast mammogram images.
arXiv Detail & Related papers (2021-05-26T14:14:45Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.