論文の概要: Diversity Preference-Aware Link Recommendation for Online Social
Networks
- arxiv url: http://arxiv.org/abs/2205.10689v1
- Date: Sat, 21 May 2022 22:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 19:28:00.527333
- Title: Diversity Preference-Aware Link Recommendation for Online Social
Networks
- Title(参考訳): 多様性を考慮したオンラインソーシャルネットワーク向けリンク勧告
- Authors: Kexin Yin, Xiao Fang, Bintong Chen and Olivia Sheng
- Abstract要約: 既存のリンクレコメンデーション手法は、ユーザーと類似の友人を推薦する傾向があるが、ユーザの多様性の好みを見落としている。
本稿では,新たなリンク推薦問題として,多様性に配慮したリンク推薦問題を提案する。
次に,新しいリンクレコメンデーション問題の鍵となる特性を分析し,その問題を解決するための新しいリンクレコメンデーション手法を開発した。
- 参考スコア(独自算出の注目度): 0.2580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link recommendation, which recommends links to connect unlinked online social
network users, is a fundamental social network analytics problem with ample
business implications. Existing link recommendation methods tend to recommend
similar friends to a user but overlook the user's diversity preference,
although social psychology theories suggest the criticality of diversity
preference to link recommendation performance. In recommender systems, a field
related to link recommendation, a number of diversification methods have been
proposed to improve the diversity of recommended items. Nevertheless, diversity
preference is distinct from diversity studied by diversification methods. To
address these research gaps, we define and operationalize the concept of
diversity preference for link recommendation and propose a new link
recommendation problem: the diversity preference-aware link recommendation
problem. We then analyze key properties of the new link recommendation problem
and develop a novel link recommendation method to solve the problem. Using two
large-scale online social network data sets, we conduct extensive empirical
evaluations to demonstrate the superior performance of our method over
representative diversification methods adapted for link recommendation as well
as state-of-the-art link recommendation methods.
- Abstract(参考訳): リンクレコメンデーション(リンクレコメンデーション)は、リンクのないオンラインソーシャルネットワークユーザーをリンクでつなぐことを推奨している。
既存のリンクレコメンデーション手法は、ユーザーと類似した友人を推薦する傾向にあるが、ユーザの多様性選好を無視する傾向にある。
リンクレコメンデーションに関連する分野であるレコメンデーションシステムでは,推奨項目の多様性を改善するために,様々な多様化手法が提案されている。
しかし、多様性の選好は多様化法によって研究された多様性とは異なる。
これらの研究のギャップに対処するために,我々は,リンク推薦のための多様性優先の概念を定義し,運用し,新しいリンク推薦問題である多様性優先・アウェアリンク推奨問題を提案する。
次に,新しいリンクレコメンデーション問題の鍵となる特性を分析し,その問題を解決する新しいリンクレコメンデーション手法を開発した。
2つの大規模オンラインソーシャルネットワークデータセットを用いて,提案手法がリンク推薦や最先端リンク推薦手法に適合する代表的多角化手法よりも優れた性能を示すために,広範な実証的評価を行った。
関連論文リスト
- MDAP: A Multi-view Disentangled and Adaptive Preference Learning Framework for Cross-Domain Recommendation [63.27390451208503]
クロスドメインレコメンデーションシステムは、マルチドメインユーザインタラクションを活用してパフォーマンスを向上させる。
マルチビュー・ディスタングル・アダプティブ・プライスラーニング・フレームワークを提案する。
当社のフレームワークはマルチビューエンコーダを使用して,多様なユーザの好みをキャプチャする。
論文 参考訳(メタデータ) (2024-10-08T10:06:45Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
本稿では,コプラ関数による妥当性と多様性を組み合わせた新しいレコメンデーション戦略を提案する。
我々は,システムと対話しながらユーザから得た知識量のサロゲートとして多様性を利用する。
我々の戦略は、最先端のライバル数社を上回っている。
論文 参考訳(メタデータ) (2024-08-07T13:48:24Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
我々は,表現退化問題は,既存のSR手法における推奨の多様性の欠如の根本原因であると主張している。
Singular sPectrum sMoothing regularization for Recommendation (SPMRec)を提案する。
論文 参考訳(メタデータ) (2023-06-21T02:42:37Z) - Improving Recommendation System Serendipity Through Lexicase Selection [53.57498970940369]
本稿では,レコメンデーションシステムにおけるエコーチャンバーとホモフィリーの存在を測定するための新しいセレンディピティー指標を提案する。
そこで我々は,レキシケース選択と呼ばれる親選択アルゴリズムを採用することにより,よく知られたレコメンデーション手法の多様性保存性の向上を試みる。
以上の結果から,レキシケースの選択とランキングの混合は,パーソナライゼーション,カバレッジ,セレンディピティー・ベンチマークにおいて,純粋にランク付けされている。
論文 参考訳(メタデータ) (2023-05-18T15:37:38Z) - Performative Recommendation: Diversifying Content via Strategic
Incentives [13.452510519858995]
学習が戦略的コンテンツクリエーターにインセンティブを与え、多様なコンテンツを作る方法を示します。
われわれのアプローチは、コンテンツに対する戦略的変化を予想する、新しい形式の正規化に依存している。
論文 参考訳(メタデータ) (2023-02-08T21:02:28Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
本稿では,ユーザのレーティングの類似性に関連するグラフベースモデルを用いたレコメンデータシステムを提案する。
オートエンコーダの特徴抽出の利点を生かして,全ての属性を組み合わせて新しい特徴を抽出する。
The experimental results on the MovieLens dataset shows that the proposed algorithm developed many existing recommendation algorithm on recommendation accuracy。
論文 参考訳(メタデータ) (2021-11-06T10:47:45Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
本稿では,Recommender Systems (RS) 設定のための拡張多目的強化学習(SMORL)を紹介する。
SMORLエージェントは、標準レコメンデーションモデルを拡張し、RLレイヤーを追加し、3つの主要な目的(正確性、多様性、新しいレコメンデーション)を同時に満たすように強制する。
実世界の2つのデータセットに対する実験結果から,集約的多様性の顕著な増加,精度の適度な向上,レコメンデーションの反復性の低下,および相補的目的としての多様性と新規性の強化の重要性が示された。
論文 参考訳(メタデータ) (2021-10-28T13:22:45Z) - Simultaneous Relevance and Diversity: A New Recommendation Inference
Approach [81.44167398308979]
本稿では,新しいCF推論手法である負対陽性を導入することにより,一般協調フィルタリング(CF)を拡張した新しい手法を提案する。
我々のアプローチは、様々な高度なレベルでの幅広い推奨シナリオ/ユースケースに適用できる。
公開データセットと実世界の生産データに関する分析と実験により、我々のアプローチは、関連性および多様性に関する既存の手法を同時に上回ることを示した。
論文 参考訳(メタデータ) (2020-09-27T22:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。