論文の概要: Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity
- arxiv url: http://arxiv.org/abs/2306.11986v2
- Date: Fri, 19 Jul 2024 00:03:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 00:35:58.376878
- Title: Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity
- Title(参考訳): 制御可能な多様性を伴うシーケンスレコメンデーション:表現の退化と多様性
- Authors: Ziwei Fan, Zhiwei Liu, Hao Peng, Philip S. Yu,
- Abstract要約: 我々は,表現退化問題は,既存のSR手法における推奨の多様性の欠如の根本原因であると主張している。
Singular sPectrum sMoothing regularization for Recommendation (SPMRec)を提案する。
- 参考スコア(独自算出の注目度): 59.24517649169952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation (SR) models the dynamic user preferences and generates the next-item prediction as the affinity between the sequence and items, in a joint latent space with low dimensions (i.e., the sequence and item embedding space). Both sequence and item representations suffer from the representation degeneration issue due to the user/item long-tail distributions, where tail users/ items are indistinguishably distributed as a narrow cone in the latent space. We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods, impairing the user potential exploration and further worsening the echo chamber issue. In this work, we first disclose the connection between the representation degeneration and recommendation diversity, in which severer representation degeneration indicates lower recommendation diversity. We then propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration and achieve the balance between recommendation diversity and performance. The proposed smoothing regularization alleviates the degeneration by maximizing the area under the singular value curve, which is also the diversity surrogate. We conduct experiments on four benchmark datasets to demonstrate the superiority of SPMRec, and show that the proposed singular spectrum smoothing can control the balance of recommendation performance and diversity simultaneously.
- Abstract(参考訳): シークエンシャルレコメンデーション(SR)は、動的ユーザ好みをモデル化し、低次元(シークエンスとアイテム埋め込みスペース)のジョイント潜在空間において、シークエンスとアイテム間の親和性として次のイテム予測を生成する。
シーケンスとアイテムの表現は、ユーザ/イテムのロングテール分布による表現退化の問題に悩まされ、テールユーザ/アイテムは、潜在空間における狭いコーンとして区別不能に分散される。
表現退化問題は,既存のSR手法における推奨多様性の欠如の根本原因であり,ユーザの潜在的探索を損なうとともに,エコー室の問題をさらに悪化させるものである,と我々は主張する。
本研究では,まず,表現退化と推薦多様性の関係を明らかにする。
次に,新たなSingular sPectrum sMoothing regularization for Recommendation (SPMRec)を提案する。
提案したスムーズな正規化は, 多様性代理である特異値曲線の下での面積を最大化することにより, 退化を緩和する。
本研究では,SPMRecの優位性を示すために,4つのベンチマークデータセットを用いて実験を行い,提案した特異スペクトルの平滑化が推薦性能と多様性のバランスを同時に制御可能であることを示す。
関連論文リスト
- DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
シークエンシャルレコメンデーション(SR:Sequential Recommendation)は、非定常的な歴史的相互作用に基づいてユーザの好みに合わせてレコメンデーションを調整することによって、レコメンデーションシステムにおいて重要な役割を担っている。
誘導抽出モジュール(GEM)と生成拡散凝集モジュール(DAM)を組み合わせたDimeRecという新しいフレームワークを提案する。
我々の数値実験により、DimeRecは3つの公開データセットで確立されたベースライン法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-08-22T06:42:09Z) - Semantic Codebook Learning for Dynamic Recommendation Models [55.98259490159084]
動的シーケンシャルレコメンデーション(DSR)は、ユーザの振る舞いに基づいてモデルパラメータを生成し、シーケンシャルレコメンデーションのパーソナライズを改善する。
巨大なパラメータ探索空間と疎結合でノイズの多いユーザ-イテム相互作用の課題に直面するため、生成されたモデルパラメータの適用性が低下する。
Semantic Codebook Learning for Dynamic Recommendation Models (SOLID)フレームワークは、これらの課題に効果的に取り組むことで、DSRの大幅な進歩を示す。
論文 参考訳(メタデータ) (2024-07-31T19:25:25Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
強化学習アルゴリズムは、レコメンデータシステムのユーザエンゲージメントを最適化するために使用することができる。
しかし、RLアプローチはスレートレコメンデーションシナリオでは難解である。
この設定では、アクションはアイテムの組み合わせを含むことができるスレートに対応する。
本研究では,変分オートエンコーダによって学習された連続低次元ラテント空間におけるスレートの符号化を提案する。
我々は、(i)以前の作業で要求される仮定を緩和し、(ii)完全なスレートをモデル化することで、アクション選択の品質を向上させることができる。
論文 参考訳(メタデータ) (2023-01-20T15:28:09Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z) - Dual Gaussian-based Variational Subspace Disentanglement for
Visible-Infrared Person Re-Identification [19.481092102536827]
Visible-infrared person re-identification (VI-ReID)は、夜間のインテリジェント監視システムにおいて、困難かつ必須の課題である。
本稿では,2つのガウス型変分オートエンコーダ(DG-VAE)を提案する。
提案手法は2つのVI-ReIDデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-08-06T08:43:35Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。